Previous |  Up |  Next

Article

Title: Distributed consensus control for discrete-time linear multi-agent systems with reduced-order observer (English)
Author: Chen, Wenhai
Author: Gao, Lixin
Author: Xu, Xiaole
Author: Xu, Bingbing
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 639-654
Summary lang: English
.
Category: math
.
Summary: In this paper, we investigate multi-agent consensus problem with discrete-time linear dynamics under directed interaction topology. By assumption that all agents can only access the measured outputs of its neighbor agents and itself, a kind of distributed reduced-order observer-based protocols are proposed to solve the consensus problem. A multi-step algorithm is provided to construct the gain matrices involved in the protocols. By using of graph theory, modified discrete-time algebraic Riccati equation and Lyapunov method, the proposed protocols can be proved to solve the discrete-time consensus problem. Furthermore, the proposed protocol is generalized to solve the model-reference consensus problem. Finally, a simulation example is given to illustrate the effectiveness of our obtained results. (English)
Keyword: multi-agent system
Keyword: discrete-time system
Keyword: distributed control
Keyword: consensus
Keyword: observer
MSC: 93A14
MSC: 93C10
idZBL: Zbl 06530335
idMR: MR3423191
DOI: 10.14736/kyb-2015-4-0639
.
Date available: 2015-11-20T12:18:24Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144472
.
Reference: [1] Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination..IEEE Trans. Industr. Informatics 9 (2013), 427-4384. 10.1109/tii.2012.2219061
Reference: [2] Chen, C. T.: Linear System Theory and Design. Third edition..Oxford University Press, New York 1999.
Reference: [3] Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman filtering with intermittent observations..IEEE Trans. Automat. Control 49 (2004), 1453-1464. MR 2086911, 10.1109/tac.2004.834121
Reference: [4] Gao, L., Tang, Y., Chen, W., Zhang, H.: Consensus seeking in multi-agent systems with an active leader and communication delays..Kybernetika 47 (2011), 773-789. Zbl 1236.93006, MR 2850463
Reference: [5] Gao, L., Tong, C., Wang, L.: $H_\infty$ dynamic output feedback consensus control for discrete-time multi-agent systems with switching topology..The Arabian J. Sci. Engrg. 39 (2014), 1477-1487. MR 3158186, 10.1007/s13369-013-0807-7
Reference: [6] Gao, Y., Wang, L.: Consensus of multiple dynamic agents with sampled information..IET Control Theory Appl. 4 (2010), 945-956. MR 2680775, 10.1049/iet-cta.2008.0565
Reference: [7] Gao, L., Xu, B., Li, J., Zhang, H.: Distributed reduced-order observer-based approach to consensus problems for linear multi-agent systems..IET Control Theory Appl. 9 (2015), 784-792. MR 3363254, 10.1049/iet-cta.2013.1104
Reference: [8] Gao, L., Zhu, X., Chen, W.: Leader-following consensus problem with an accelerated motion leader..Int. J. Control, Automation, and Systems 10 (2012), 5, 931-939. 10.1007/s12555-012-0509-z
Reference: [9] Hengster-Movric, K., Lewis, F.: Cooperative observers and regulators for discrete-time multiagent systems..Int. J. Robust and Nonlinear Control 23 (2013), 1545-1562. Zbl 1286.93039, MR 3086126, 10.1002/rnc.2840
Reference: [10] Hengster-Movric, K., You, K., Lewis, F. L., Xie, L.: Synchronization of discrete-time multi-agent systems on graphs using Riccati design..Automatica 49 (2013), 414-423. Zbl 1259.93005, MR 3004706, 10.1016/j.automatica.2012.11.038
Reference: [11] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology..Automatica 42 (2006), 1177-1182. Zbl 1117.93300, MR 2230987, 10.1016/j.automatica.2006.02.013
Reference: [12] Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks..Automatica 44 (2008), 846-850. MR 2527101, 10.1016/j.automatica.2007.07.004
Reference: [13] Hong, Y., Wang, X.: Multi-agent tracking of a high-dimensional active leader with switching topology..J. Systems Science Complex. 22 (2009), 722-731. Zbl 1300.93014, MR 2565265, 10.1007/s11424-009-9197-z
Reference: [14] Hu, J., Geng, J., Zhou, H.: An observer-based consensus tracking control and application to event-triggered tracking..Comm. Nonlinear Sci. Numer. Simul. 20 (2015), 559-570. MR 3251515, 10.1016/j.cnsns.2014.06.002
Reference: [15] Hu, J., Zheng, W.: Adaptive tracking control of leader follower systems with unknown dynamics and partial measurements..Automatica 50 (2014), 1416-1423. Zbl 1296.93085, MR 3198780, 10.1016/j.automatica.2014.02.037
Reference: [16] Jadbabaie, A., Lin, J., Morse, A. S.: Coordination of groups of mobile agents using nearest neighbor rules..IEEE Trans. Automat. Control 48 (2003), 988-1001. MR 1986266, 10.1109/tac.2003.812781
Reference: [17] Ke, Y., Xie, L.: Network topology and communication data rate for consensusability of discrete-time multi-agent systems..IEEE Trans. Automat. Control 56 (2011), 2262-2275. MR 2884153, 10.1109/tac.2011.2164017
Reference: [18] Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint..IEEE Trans. on Circuits and Systems I: Regular Papers 57 (2010), 213-224. MR 2729823, 10.1109/tcsi.2009.2023937
Reference: [19] Li, Z., Liu, X., Lin, P., Ren, W.: Consensus of linear multi-agent systems with reduced-order observer-based protocols..Systems Control Lett. 60 (2011), 510-516. Zbl 1222.93013, MR 2849495, 10.1016/j.sysconle.2011.04.008
Reference: [20] Liu, Y., Ho, D. W. C., Wang, Z.: A new framework for consensus for discrete-time directed networks of multi-agents with distributed delays..Int. J. Control 85 (2012), 1755-1765. Zbl 1253.93081, MR 2980250, 10.1080/00207179.2012.703331
Reference: [21] Olfati-Saber, R., Murrary, R. M.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Automat. Control. 49 (2004), 1520-1533. MR 2086916, 10.1109/tac.2004.834113
Reference: [22] Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks..Springer-Verlag London Limited 2011. Zbl 1225.93003, 10.1007/978-0-85729-169-1
Reference: [23] Su, Y., Huang, J.: Two consensus problems for discrete-time multi-agent systems with switching network topology..Automatica 48 (2012), 1988-1997. Zbl 1258.93015, MR 2956875, 10.1016/j.automatica.2012.03.029
Reference: [24] Xu, B., Gao, L., Zhang, Y., Xu, X.: Leader-following consensus stability of discrete-time linear multiagent systems with observer-based protocols..Abstract and Applied Analysis 2013 (2013), 1-10. Zbl 1291.93018, MR 3111802, 10.1155/2013/357971
Reference: [25] Xu, B., Li, J., Gao, L.: Distributed reduced-order observer-based consensus control of discrete-time linear multi-agent system..In: Proc. 3rd IFAC International Conference on Intelligent Control and Automation Science, 2013, pp. 124-129. 10.3182/20130902-3-cn-3020.00040
Reference: [26] Xu, X., Chen, S., Huang, W., Gao, L.: Leader-following consensus of discrete-time multi-agent systems with observer-based protocols..Neurocomputing 118 (2013), 334-341. 10.1016/j.neucom.2013.02.023
Reference: [27] Xu, X., Chen, S., Gao, L.: Observer-based consensus tracking for second-order leader-following nonlinear multi-agent systems with adaptive coupling parameter design..Neurocomputing 156 (2015), 297-305. 10.1016/j.neucom.2014.12.037
Reference: [28] Zhai, C.: Sweep coverage of discrete time multi-robot networks with general topologies..Kybernetika 50 (2014), 19-31. Zbl 1302.93225, MR 3195002
Reference: [29] Zhang, H., Lewis, F. L., Das, A.: Optimal design for synchronization of cooperative systems: State feedback, observer and output feedback..IEEE Trans. Automat. Control 56 (2011), 1948-1952. MR 2856813, 10.1109/tac.2011.2139510
.

Files

Files Size Format View
Kybernetika_51-2015-4_5.pdf 405.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo