Previous |  Up |  Next

Article

Title: Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures (English)
Author: Wu, Jie
Author: Sun, Yong-zheng
Author: Zhao, Dong-hua
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 655-666
Summary lang: English
.
Category: math
.
Summary: In this paper, we investigate the finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures. We propose new adaptive controllers, with which we can synchronize two complex dynamical networks within finite time. Sufficient conditions for the finite-time adaptive outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results. (English)
Keyword: complex networks
Keyword: outer synchronization
Keyword: finite-time
Keyword: adaptive feedback controllers
MSC: 05C82
MSC: 34D06
idZBL: Zbl 06530336
idMR: MR3423192
DOI: 10.14736/kyb-2015-4-0655
.
Date available: 2015-11-20T12:20:08Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144473
.
Reference: [1] An, X. L., Zhang, L., Li, Y. Z., Zhang, J. G.: Synchronization analysis of complex networks with multi-weights and its application in public traffic network..Physica A: Statist. Mech. Appl. 412 (2014), 149-156. MR 3237793, 10.1016/j.physa.2014.06.033
Reference: [2] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs..Nonlinear Dyn. 69 (2012), 1903-1914. Zbl 1263.93111, MR 2945528, 10.1007/s11071-012-0395-1
Reference: [3] Aghababa, M. P., Aghababa, H. P.: Adaptive finite-time synchronization of non-autonomous chaotic systems with uncertainty..J. Comput. Nonlin. Dyn. 8 (2013), 031006. 10.1115/1.4023007
Reference: [4] Chen, D. Y., Zhang, R. F., Liu, X. Z., Ma, X. Y.: Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks..Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 4105-4121. MR 3215040, 10.1016/j.cnsns.2014.05.005
Reference: [5] Dimassi, H., Loría, A., Belghith, S.: A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers..Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3727-3739. Zbl 1258.94010, 10.1016/j.cnsns.2012.01.024
Reference: [6] Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems..Automatica 28 (1992), 531-548. Zbl 0765.93030, 10.1016/0005-1098(92)90177-h
Reference: [7] Guirey, E., Bees, M. A., Martin, A., Srokosz, M.: Persistence of cluster synchronization under the influence of advection..Phys. Rev. E 81 (2010), 1511-1521. MR 2736247, 10.1103/physreve.81.051902
Reference: [8] He, P., Ma, S. H., Fan, T.: Finite-time mixed outer synchronization of complex networks with coupling time-varying delay..Chaos 22 (2012), 043151. MR 3388713, 10.1063/1.4773005
Reference: [9] Huberman, B. A., Adamic, L. A.: Internet-Growth dynamics of the world-wide web..Nature 401 (1999), 6749, 131. 10.1038/43604
Reference: [10] Lasalle, J. P.: The extend of asymptotic stability..Proc. Natl. Acad. Sci. USA 46 (1960), 363-365. MR 0113014, 10.1073/pnas.46.3.363
Reference: [11] Lasalle, J. P.: Some extensions of Liapunov's second method..IRE Trans. Circuit Theory 7 (1960), 520-527. MR 0118902, 10.1109/tct.1960.1086720
Reference: [12] Li, C. G., Chen, G. R.: Synchronization of networks with coupling delays..Phys. A: Statist. Mech. Appl. 343 (2004), 263-278. 10.1016/j.physa.2004.05.058
Reference: [13] Li, C. P., Sun, W. G., Kurths, J.: Synchronization between two coupled complex networks..Phys. Rev. E 76 (2007), 046204. 10.1103/physreve.76.046204
Reference: [14] Liao, T. L., Huang, N. S.: An observer-based approach for chaotic synchronization with applications to secure communications..IEEE Trans. Circuits Syst. I 46 (1999), 1144-1150. Zbl 0963.94003, 10.1109/81.788817
Reference: [15] Lü, J. H., Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria..IEEE Trans. Automat. Control 50 (2005), 841-846. MR 2142000, 10.1109/tac.2005.849233
Reference: [16] Mei, J., Jiang, M. H., Xu, W. M., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay..Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 2462-2478. Zbl 1311.34157, MR 3042052, 10.1016/j.cnsns.2012.11.009
Reference: [17] Revayova, M., Torok, C.: Piecewise approximation and neural networks..Kybernetika 43 (2007), 547-559. Zbl 1145.68495, MR 2377932
Reference: [18] Strogatz, S. H., Stewart, I.: Coupled oscillators and biological synchronization..Sci. Am. 269 (1993), 102-109. 10.1038/scientificamerican1293-102
Reference: [19] Sun, W., Chen, Z., Kang, Y. H.: Impulsive synchronization of a nonlinear coupled complex network with a delay node..Chin. Phys. B 21 (2012), 010504. 10.1088/1674-1056/21/1/010504
Reference: [20] Sun, W. G., Li, S. X.: Generalized outer synchronization between two uncertain dynamical networks..Nonlinear Dyn. 77 (2014), 481-489. Zbl 1314.34121, MR 3229176, 10.1007/s11071-014-1311-7
Reference: [21] Sun, Y. Z., Li, W., Ruan, J.: Finite-time generalized outer synchronization between two different complex networks..Commun. Theor. Phys. 58 (2012), 697-703. Zbl 1264.05128, MR 3089102, 10.1088/0253-6102/58/5/13
Reference: [22] Sun, Y. Z., Li, W., Ruan, J.: Generalized outer synchronization between two complex dynamical networks with time delay and noise perturbation..Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 989-998. MR 2996611, 10.1016/j.cnsns.2012.08.040
Reference: [23] Sun, Y. Z., Li, W., Zhao, D. H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies..Chaos 22 (2012), 023152. MR 3388569, 10.1063/1.4731265
Reference: [24] Sun, W. G., Wu, Y. Q., Zhang, J. Y., Qin, S.: Inner and outer synchronization between two coupled networks with interactions..J. Franklin Inst. 352 (2015), 3166-3177. MR 3369921, 10.1016/j.jfranklin.2014.08.004
Reference: [25] Sun, W. G., Wang, S., Wang, G. H., Wu, Y. Q.: Lag synchronization via pinning control between two coupled networks..Nonlinear Dyn. 79 (2015), 2659-2666. MR 3317469, 10.1007/s11071-014-1838-7
Reference: [26] Tan, S. L., Lü, J. H., Yu, X. H., Hill, D. J.: Evolution and maintenance of cooperation via inheritance of neighborhood relationship..Chin. Sci. Bull. 58 (2013), 28 - 29, 3491-3498. 10.1007/s11434-013-5984-y
Reference: [27] Tan, S. L., Lü, J. H., Hill, D. J.: Towards a theoretical framework for analysis and intervention of random drift on general networks..IEEE Trans. Automat. Control 60 (2015), 2, 576-581. MR 3310190, 10.1109/tac.2014.2329235
Reference: [28] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326.. MR 2737904, 10.1016/j.physleta.2011.04.041
Reference: [29] Watts, D. J., Strogatz, S. H.: Collective dynamics of ‘small-world’ networks..Nature 393 (1998), 440-442. 10.1038/30918
Reference: [30] Wong, Y. C., Sundareshan, M. K.: A simplex trained neural network-based architecture for sensor fusion and tracking of target maneuvers..Kybernetika 35 (1999), 613-636. Zbl 1274.93265, MR 1728471
Reference: [31] Wu, Z. Y., Fu, X. C.: Outer synchronization between drive-response networks with nonidentical nodes and unknown parameters..Nonlinear Dyn. 69 (2012), 685-692. Zbl 1258.34131, MR 2929902, 10.1007/s11071-011-0296-8
Reference: [32] Wu, Z. G., Park, J. H., Su, H. Y., Chu, J.: Discontinuous Lyapunov functional approach to synchronization of time-delay neural networks using sampled-data..Nonlinear Dyn. 69 (2012), 102-109. Zbl 1263.34075, MR 2945537, 10.1007/s11071-012-0404-4
Reference: [33] Wu, Z. Y., Ye, Q. L., Liu, D. F.: Finite-time synchronization of dynamical networks coupled with complex-variable chaotic systems..Int. J. Mod. Phys. C 24 (2013), 1350058. MR 3103796, 10.1142/s0129183113500587
Reference: [34] Yang, X. S., Cao, J. D., Lu, J. Q.: Synchronization of delayed complex dynamical networks with impulsive and stochastic effects..Nonlinear Anal., Real World Appl. 12 (2011), 2252-2266. Zbl 1223.37115, MR 2801017, 10.1016/j.nonrwa.2011.01.007
Reference: [35] Yang, X., Wu, Z. Y., Cao, J. D.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes..Nonlinear Dyn. 73 (2013), 2313-2327. Zbl 1281.34100, MR 3094795, 10.1007/s11071-013-0942-4
Reference: [36] Zheng, C., Cao, J. D.: Finite-time synchronization of the singular hybrid coupled networks..J. Appl. Math. 2013 (2013), 378376. MR 3045405, 10.1155/2013/378376
Reference: [37] Zhong, W. S., Stefanovski, J. D., Dimirovski, G. M., Zhao, J.: Decentralized control and synchronization of time-varying complex dynamical network..Kybernetika 45 (2009), 151-167. Zbl 1158.34332, MR 2489586
Reference: [38] Zhou, J., Lu, J. A., Lü, J. H.: Adaptive synchronization of an uncertain complex dynamical network..IEEE Trans. Automat. Control 51 (2006), 4, 652-656. MR 2228029, 10.1109/tac.2006.872760
Reference: [39] Zhou, J., Lu, J. A., Lü, J. H.: Pinning adaptive synchronization of a general complex dynamical network..Automatica 44 (2008), 4, 996-1003. Zbl 1158.93339, MR 2530942, 10.1016/j.automatica.2007.08.016
.

Files

Files Size Format View
Kybernetika_51-2015-4_6.pdf 994.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo