Previous |  Up |  Next

Article

Keywords:
fuzzy connectives; finite chain; t-operator; semi-t-operator; pseudo-t-operator
Summary:
Recently, Drygaś generalized nullnorms and t-operators and introduced semi-t-operators by eliminating commutativity from the axiom of t-operators. This paper is devoted to the study of the discrete counterpart of semi-t-operators on a finite totally ordered set. A characterization of semi-t-operators on a finite totally ordered set is given. Moreover, The relations among nullnorms, t-operators, semi-t-operators and pseudo-t-operators (i. e., commutative semi-t-operators) on a finite totally ordered set are shown.
References:
[1] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems 104 (1999), 61-75. DOI 10.1016/s0165-0114(98)00259-0 | MR 1685810 | Zbl 0935.03060
[2] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 17 (2009), 1-14. DOI 10.1142/s021848850900570x | MR 2514519 | Zbl 1178.03070
[3] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001), 385-394. DOI 10.1016/s0165-0114(99)00125-6 | MR 1829256 | Zbl 0977.03026
[4] Drygaś, P.: Distributivity between semi-t-operators and semi-nullnorms. Fuzzy Sets and Systems 264 2015, 100-109. DOI 10.1016/j.fss.2014.09.003 | MR 3303666
[5] Fodor, J.: Smooth associative operations on finite ordinal scales. IEEE Trans. on Fuzzy Systems 8 (2000), 6, 791-795. DOI 10.1109/91.890343
[6] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publ., Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[7] Kolesarova, A., Mayor, G., Mesiar, R.: Weighted ordinal means. Information Sciences 177 (2007), 3822-3830. DOI 10.1016/j.ins.2007.03.003 | MR 2337214 | Zbl 1124.03028
[8] Li, G., Liu, H-w., Fodor, J.: On weakly smooth uninorms on finite chain. Int. J. Intelligent Systems 30 (201), 421-440. DOI 10.1002/int.21694
[9] Mas, M., Mayor, G., Torrens, J.: t-operators and uninorms on a Finite totally ordered set. Int. J. Intelligent Systems 14 (1999), 909-922. DOI 10.1002/(SICI)1098-111X(199909)14:9<909::AID-INT4>3.0.CO;2-B | MR 1691482 | Zbl 0948.68173
[10] Mas, M., Mayor, G., Torrens, J.: t-operators. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 7 (1999), 31-50. DOI 10.1142/s0218488599000039 | MR 1691482 | Zbl 1005.03047
[11] Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets and Systems 128 (2002), 209-225. DOI 10.1016/s0165-0114(01)00123-3 | MR 1908427 | Zbl 1005.03047
[12] Mayor, G., Torrens, J.: On a class of operators for expert systems. Int. J. Intelligent Systems 8 (1993), 771-778. DOI 10.1002/int.4550080703 | Zbl 0785.68087
[13] Mayor, G., Torrens, J.: Triangular Norms on Discrete Settings. In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam (2005). MR 2165236 | Zbl 1079.03012
[14] Riera, J. V., Torrens, J.: Uninorms and nullnorms on the set of discrete fuzzy numbers. In: EUSFLAT Conf. 2011, pp. 59-66. DOI 10.2991/eusflat.2011.137 | Zbl 1254.03106
[15] Ruiz-Aguilera, D., Torrens, J.: A characterization of discrete uninorms having smooth underlying operators. Fuzzy Sets and Systems 268 (2015), 44-58. DOI 10.1016/j.fss.2014.10.020 | MR 3320246
[16] Torrens, J.: Estudi de models matemktics per a connectius en logica multivaluada. Ph.D. Thesis, Palma de Mallorca Universitat de les IIIes Balears, 1990.
[17] Trillas, E., Alsina, C.: Logic: going father from Tarski?. Fuzzy Sets and Systems 5 (1993), 3, 1-13. DOI 10.1016/0165-0114(93)90518-m | MR 1198778
Partner of
EuDML logo