Previous |  Up |  Next

Article

Title: New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space (English)
Author: Aquino, Cícero P.
Author: de Lima, Henrique F.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 201-209
Summary lang: English
.
Category: math
.
Summary: In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb{H}^{n+1}$, that is, complete hypersurfaces of $\mathbb{H}^{n+1}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb{R}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb{H}^{n+1}$. Furthermore, a rigidity result concerning the compact case is also given. (English)
Keyword: hyperbolic space
Keyword: linear Weingarten hypersurfaces
Keyword: totally umbilical hypersurfaces
Keyword: hyperbolic cylinders
MSC: 53A10
MSC: 53B30
MSC: 53C42
MSC: 53C50
idZBL: Zbl 06537725
idMR: MR3434603
DOI: 10.5817/AM2015-4-201
.
Date available: 2015-11-30T09:58:12Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144480
.
Reference: [1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form.Yokohama Math. J. 35 (1987), 123–126. Zbl 0645.53010, MR 0928379
Reference: [2] Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres.Proc. Amer. Math. Soc. 120 (1994), 1223–1229. Zbl 0802.53017, MR 1172943, 10.1090/S0002-9939-1994-1172943-2
Reference: [3] Aquino, C.P., de Lima, H.F.: On the geometry of linear Weingarten hypersurfaces in the hyperbolic space.Monatsh. Math. 171 (2013), 259–268. Zbl 1279.53055, MR 3090789, 10.1007/s00605-013-0476-3
Reference: [4] Caminha, A.: The geometry of closed conformal vector fields on Riemannian spaces.Bull. Braz. Math. Soc. 42 (2011), 277–300. Zbl 1242.53068, MR 2833803, 10.1007/s00574-011-0015-6
Reference: [5] Cartan, É.: Familles de surfaces isoparamétriques dans les espaces à courbure constante.Ann. Mat. Pura Appl. 17 (1938), 177–191. Zbl 0020.06505, MR 1553310, 10.1007/BF02410700
Reference: [6] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. Zbl 0349.53041, MR 0431043, 10.1007/BF01425237
Reference: [7] Li, H.: Hypersurfaces with constant scalar curvature in space forms.Math. Ann. 305 (1996), 665–672. Zbl 0864.53040, MR 1399710, 10.1007/BF01444243
Reference: [8] Li, H.: Global rigidity theorems of hypersurfaces.Ark. Mat. 35 (1997), 327–351. Zbl 0920.53028, MR 1478784, 10.1007/BF02559973
Reference: [9] Li, H., Suh, Y.J., Wei, G.: Linear Weingarten hypersurfaces in a unit sphere.Bull. Korean Math. Soc. 46 (2009), 321–329. Zbl 1165.53361, MR 2502796, 10.4134/BKMS.2009.46.2.321
Reference: [10] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor.Amer. J. Math. 96 (1974), 207–213. Zbl 0302.53028, MR 0353216, 10.2307/2373587
Reference: [11] Omori, H.: Isometric immersions of Riemannian manifolds.J. Math. Soc. Japan 19 (1967), 205–214. Zbl 0154.21501, MR 0215259, 10.2969/jmsj/01920205
Reference: [12] Ryan, P.J.: Hypersurfaces with parallel Ricci tensor.Osaka J. Math. 8 (1971), 251–259. Zbl 0222.53025, MR 0296859
Reference: [13] Shu, S.: Complete hypersurfaces with constant scalar curvature in a hyperbolic space.Balkan J. Geom. Appl. 12 (2007), 107–115. Zbl 1135.53039, MR 2321535
Reference: [14] Yau, S.T.: Harmonic functions on complete Riemannian manifolds.Comm. Pure Appl. Math. 28 (1975), 201–228. MR 0431040, 10.1002/cpa.3160280203
Reference: [15] Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry.Indiana Univ. Math. J. 25 (1976), 659–670. MR 0417452, 10.1512/iumj.1976.25.25051
.

Files

Files Size Format View
ArchMathRetro_051-2015-4_2.pdf 473.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo