Title:
|
New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space (English) |
Author:
|
Aquino, Cícero P. |
Author:
|
de Lima, Henrique F. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
201-209 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb{H}^{n+1}$, that is, complete hypersurfaces of $\mathbb{H}^{n+1}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb{R}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb{H}^{n+1}$. Furthermore, a rigidity result concerning the compact case is also given. (English) |
Keyword:
|
hyperbolic space |
Keyword:
|
linear Weingarten hypersurfaces |
Keyword:
|
totally umbilical hypersurfaces |
Keyword:
|
hyperbolic cylinders |
MSC:
|
53A10 |
MSC:
|
53B30 |
MSC:
|
53C42 |
MSC:
|
53C50 |
idZBL:
|
Zbl 06537725 |
idMR:
|
MR3434603 |
DOI:
|
10.5817/AM2015-4-201 |
. |
Date available:
|
2015-11-30T09:58:12Z |
Last updated:
|
2016-04-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144480 |
. |
Reference:
|
[1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form.Yokohama Math. J. 35 (1987), 123–126. Zbl 0645.53010, MR 0928379 |
Reference:
|
[2] Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres.Proc. Amer. Math. Soc. 120 (1994), 1223–1229. Zbl 0802.53017, MR 1172943, 10.1090/S0002-9939-1994-1172943-2 |
Reference:
|
[3] Aquino, C.P., de Lima, H.F.: On the geometry of linear Weingarten hypersurfaces in the hyperbolic space.Monatsh. Math. 171 (2013), 259–268. Zbl 1279.53055, MR 3090789, 10.1007/s00605-013-0476-3 |
Reference:
|
[4] Caminha, A.: The geometry of closed conformal vector fields on Riemannian spaces.Bull. Braz. Math. Soc. 42 (2011), 277–300. Zbl 1242.53068, MR 2833803, 10.1007/s00574-011-0015-6 |
Reference:
|
[5] Cartan, É.: Familles de surfaces isoparamétriques dans les espaces à courbure constante.Ann. Mat. Pura Appl. 17 (1938), 177–191. Zbl 0020.06505, MR 1553310, 10.1007/BF02410700 |
Reference:
|
[6] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. Zbl 0349.53041, MR 0431043, 10.1007/BF01425237 |
Reference:
|
[7] Li, H.: Hypersurfaces with constant scalar curvature in space forms.Math. Ann. 305 (1996), 665–672. Zbl 0864.53040, MR 1399710, 10.1007/BF01444243 |
Reference:
|
[8] Li, H.: Global rigidity theorems of hypersurfaces.Ark. Mat. 35 (1997), 327–351. Zbl 0920.53028, MR 1478784, 10.1007/BF02559973 |
Reference:
|
[9] Li, H., Suh, Y.J., Wei, G.: Linear Weingarten hypersurfaces in a unit sphere.Bull. Korean Math. Soc. 46 (2009), 321–329. Zbl 1165.53361, MR 2502796, 10.4134/BKMS.2009.46.2.321 |
Reference:
|
[10] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor.Amer. J. Math. 96 (1974), 207–213. Zbl 0302.53028, MR 0353216, 10.2307/2373587 |
Reference:
|
[11] Omori, H.: Isometric immersions of Riemannian manifolds.J. Math. Soc. Japan 19 (1967), 205–214. Zbl 0154.21501, MR 0215259, 10.2969/jmsj/01920205 |
Reference:
|
[12] Ryan, P.J.: Hypersurfaces with parallel Ricci tensor.Osaka J. Math. 8 (1971), 251–259. Zbl 0222.53025, MR 0296859 |
Reference:
|
[13] Shu, S.: Complete hypersurfaces with constant scalar curvature in a hyperbolic space.Balkan J. Geom. Appl. 12 (2007), 107–115. Zbl 1135.53039, MR 2321535 |
Reference:
|
[14] Yau, S.T.: Harmonic functions on complete Riemannian manifolds.Comm. Pure Appl. Math. 28 (1975), 201–228. MR 0431040, 10.1002/cpa.3160280203 |
Reference:
|
[15] Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry.Indiana Univ. Math. J. 25 (1976), 659–670. MR 0417452, 10.1512/iumj.1976.25.25051 |
. |