Previous |  Up |  Next

Article

Title: Non-decomposable Nambu brackets (English)
Author: Bering, Klaus
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 211-232
Summary lang: English
.
Category: math
.
Summary: It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds. (English)
Keyword: Nambu bracket
Keyword: Darboux Theorem
Keyword: Moser trick
Keyword: multisymplectic
Keyword: presymplectic
Keyword: Weinstein splitting principle
MSC: 53D17
MSC: 53D99
MSC: 58A10
MSC: 70G10
MSC: 70G45
MSC: 70H50
idZBL: Zbl 06537726
idMR: MR3434604
DOI: 10.5817/AM2015-4-211
.
Date available: 2015-11-30T10:00:44Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144481
.
Reference: [1] Alekseevsky, D., Guha, P.: On decomposability of Nambu-Poisson tensor.Acta Math. Univ. Comenian. (N.S.) 65 (1996), 1–10. Zbl 0864.70012, MR 1422290
Reference: [2] Awane, A.: $k$-symplectic structures.J. Math. Phys. 33 (1992), 4046–4052. Zbl 0781.53024, MR 1191763, 10.1063/1.529855
Reference: [3] Baez, J.C., Hoffnung, A.E., Rogers, C.L.: Categorified symplectic geometry and the classical string.Comm. Math. Phys. 293 (2010), 701–725, arXiv:0808.0246. Zbl 1192.81208, MR 2566161, 10.1007/s00220-009-0951-9
Reference: [4] Bagger, J., Lambert, N.: Modeling multiple M2’s.Phys. Rev. D 75 (2007), 045020, arXiv:hep-th/0611108. MR 2304429, 10.1103/PhysRevD.75.045020
Reference: [5] Cantrijn, F., Ibort, A., de León, M.: On the geometry of multisymplectic manifolds.J. Austral. Math. Soc. Ser. A 66 (1999), 303–330. Zbl 0968.53052, MR 1694063, 10.1017/S1446788700036636
Reference: [6] de Azcárraga, J.A., Izquierdo, J.M.: $n$-ary Algebras: a Review with Applications.J. Phys. A 43 (2010), 293001, arXiv:1005.1028. Zbl 1202.81187, 10.1088/1751-8113/43/29/293001
Reference: [7] de Azcárraga, J.A., Perelomov, A.M., Bueno, J.C. Pérez: New generalized Poisson structures.J. Phys. A 29 (1996), 151–157, arXiv:q-alg/9601007. MR 1395505, 10.1088/0305-4470/29/7/001
Reference: [8] Dito, G., Flato, M., Sternheimer, D., Takhtajan, L.: Deformation quantization and Nambu mechanics.Comm. Math. Phys. 183 (1997), 1–22, arXiv:hep-th/9602016. Zbl 0877.70012, MR 1461949, 10.1007/BF02509794
Reference: [9] Filippov, V.T.: $n$-Lie algebras.Siberian Math. J. 26 (1985), 879–891. Zbl 0594.17002, MR 0816511, 10.1007/BF00969110
Reference: [10] Gautheron, Ph.: Some remarks concerning Nambu mechanics.Lett. Math. Phys. 37 (1996), 103–116. Zbl 0849.70014, MR 1392151
Reference: [11] Gustavsson, A.: Algebraic structures on parallel M2-branes.Nuclear Phys. B 811 (2009), 66–76, arXiv:0709.1260. Zbl 1194.81205, MR 2492260
Reference: [12] Martin, G.: A Darboux theorem for multi-symplectic manifolds.Lett. Math. Phys. 16 (1988), 133–138. Zbl 0676.58024, MR 0962194, 10.1007/BF00402020
Reference: [13] Michor, P.W., Vaisman, I.: A note on $n$-ary Poisson brackets.Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 165–172, arXiv:math/9901117. Zbl 0986.53035, MR 1758092
Reference: [14] Moser, J.: On the volume elements on a manifold.Trans. Amer. Math. Soc. 120 (1965), 286–294. Zbl 0141.19407, MR 0182927, 10.1090/S0002-9947-1965-0182927-5
Reference: [15] Nakanishi, N.: On Nambu-Poisson manifolds.Rev. Math. Phys. 10 (1998), 499–510. Zbl 0929.70015, MR 1629719
Reference: [16] Nambu, Y.: Generalized Hamiltonian dynamics.Phys. Rev. D 7 (1973), 2405–2412. Zbl 1027.70503, MR 0455611, 10.1103/PhysRevD.7.2405
Reference: [17] Pandit, S.A., Gangal, A.D.: Momentum maps and Noether theorem for generalized Nambu mechanics.arXiv:math/9908023.
Reference: [18] Pandit, S.A., Gangal, A.D.: On generalized Nambu mechanics.J. Phys. A 31 (1998), 2899–2912, arXiv:chao-dyn/9609015. Zbl 0924.70018, MR 1625155, 10.1088/0305-4470/31/12/014
Reference: [19] Sahoo, D., Valsakumar, M.C.: Nambu mechanics and its quantization.Phys. Rev. A 46 (1992), 4410–4412. 10.1103/PhysRevA.46.4410
Reference: [20] Takhtajan, L.: On foundation of the generalized Nambu mechanics.Comm. Math. Phys. 160 (1994), 295–315, arXiv:hep-th/9301111. Zbl 0808.70015, MR 1262199, 10.1007/BF02103278
Reference: [21] Vaisman, I.: A survey on Nambu-Poisson brackets.Acta Math. Univ. Comenian. (N.S.) 68 (1999), 213–241, arXiv:math/9901047. Zbl 0953.53023, MR 1757790
Reference: [22] Weinstein, A.: The local structure of Poisson manifolds.J. Differential Geom. 18 (1983), 523–557. Zbl 0524.58011, MR 0723816
Reference: [23] Weitzenböck, R.: Invariantentheorie.P. Noordhoff, Groningen, 1923.
.

Files

Files Size Format View
ArchMathRetro_051-2015-4_3.pdf 612.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo