Previous |  Up |  Next

Article

Title: Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces (English)
Author: Dragomir, S.S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 233-254
Summary lang: English
.
Category: math
.
Summary: Some Ostrowski’s type inequalities for the Riemann-Stieltjes integral $\int _{a}^{b}f\left( e^{it}\right) du\left( t\right) $ of continuous complex valued integrands $f\colon \mathcal{C}\left( 0,1\right) \rightarrow \mathbb{C}$ defined on the complex unit circle $\mathcal{C}\left( 0,1\right) $ and various subclasses of integrators $u\colon \left[ a,b\right] \subseteq \left[ 0,2\pi \right] \rightarrow \mathbb{C}$ of bounded variation are given. Natural applications for functions of unitary operators in Hilbert spaces are provided as well. (English)
Keyword: Ostrowski’s type inequalities
Keyword: Riemann-Stieltjes integral inequalities
Keyword: unitary operators in Hilbert spaces
Keyword: spectral theory
Keyword: quadrature rules
MSC: 26D15
MSC: 41A51
MSC: 47A63
idZBL: Zbl 06537727
idMR: MR3434605
DOI: 10.5817/AM2015-4-233
.
Date available: 2015-11-30T10:01:30Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144482
.
Reference: [1] Dragomir, S. S.: On the Ostrowski’s inequality for Riemann-Stieltjes integral.Korean J. Appl. Math. 7 (2000), 477–485. Zbl 0969.26017
Reference: [2] Dragomir, S. S.: On the Ostrowski inequality for Riemann-Stieltjes integral $\int _{a}^{b}f\left( t\right) du\left( t\right) $ where $f$ is of Hölder type and $u$ is of bounded variation and applications.J. KSIAM 5 (1) (2001), 35–45.
Reference: [3] Dragomir, S. S.: Ostrowski’s type inequalities for continuous functions of selfadjoint operators on Hilbert spaces: a survey of recent results.Ann. Funct. Anal. 2 (1) (2011), 139–205. Zbl 1231.47012, MR 2811214, 10.15352/afa/1399900269
Reference: [4] Dragomir, S. S.: Ostrowski’s type inequalities for some classes of continuous functions of selfadjoint operators in Hilbert spaces.Comput. Math. Appl. 62 (12) (2011), 4439–4448. Zbl 1236.26016, MR 2855586, 10.1016/j.camwa.2011.10.020
Reference: [5] Helmberg, G.: Introduction to Spectral Theory in Hilbert Space.John Wiley and Sons, 1969. Zbl 0177.42401, MR 0243367
Reference: [6] Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert (German).erman), Comment. Math. Helv. 10 (1) (1937), 226–227. MR 1509574, 10.1007/BF01214290
.

Files

Files Size Format View
ArchMathRetro_051-2015-4_4.pdf 527.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo