Title:
|
Some results on $(n,d)$-injective modules, $(n,d)$-flat modules and $n$-coherent rings (English) |
Author:
|
Zhu, Zhanmin |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
56 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
505-513 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $n,d$ be two non-negative integers. A left $R$-module $M$ is called $(n,d)$-injective, if ${\rm Ext}^{d+1}(N, M)=0$ for every $n$-presented left $R$-module $N$. A right $R$-module $V$ is called $(n,d)$-flat, if ${\rm Tor}_{d+1}(V, N)=0$ for every $n$-presented left $R$-module $N$. A left $R$-module $M$ is called weakly $n$-$FP$-injective, if ${\rm Ext}^n(N, M)=0$ for every $(n+1)$-presented left $R$-module $N$. A right $R$-module $V$ is called weakly $n$-flat, if ${\rm Tor}_n(V, N)=0$ for every $(n+1)$-presented left $R$-module $N$. In this paper, we give some characterizations and properties of $(n,d)$-injective modules and $(n,d)$-flat modules in the cases of $n\geq d+1$ or $n> d+1$. Using the concepts of weakly $n$-$FP$-injectivity and weakly $n$-flatness of modules, we give some new characterizations of left $n$-coherent rings. (English) |
Keyword:
|
$(n,d)$-injective modules |
Keyword:
|
$(n,d)$-flat modules |
Keyword:
|
$n$-coherent rings |
MSC:
|
16D40 |
MSC:
|
16D50 |
MSC:
|
16P70 |
idZBL:
|
Zbl 06537720 |
idMR:
|
MR3434225 |
DOI:
|
10.14712/1213-7243.2015.133 |
. |
Date available:
|
2015-12-17T11:49:33Z |
Last updated:
|
2018-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144755 |
. |
Reference:
|
[1] Chen J.L., Ding N.Q.: On $n$-coherent rings.Comm. Algebra 24 (1996), 3211–3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742 |
Reference:
|
[2] D.L. Costa: Parameterizing families of non-noetherian rings.Comm. Algebra 22 (1994), no. 10, 3997–4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061 |
Reference:
|
[3] Enochs E.E., Jenda O.M.G.: Relative Homological Algebra.Walter de Gruyter, Berlin-New York, 2000. Zbl 0952.13001, MR 1753146 |
Reference:
|
[4] Holm H., Jørgensen P.: Covers, precovers, and purity.Illinois J. Math. 52 (2008), 691–703. Zbl 1189.16007, MR 2524661 |
Reference:
|
[5] Megibben C.: Absolutely pure modules.Proc. Amer.Math. Soc. 26 (1970), 561–566. Zbl 0216.33803, MR 0294409, 10.1090/S0002-9939-1970-0294409-8 |
Reference:
|
[6] Rada J., Saorin M.: Rings characterized by (pre)envelopes and (pre)covers of their modules.Comm. Algebra 26 (1998), 899–912. Zbl 0908.16003, MR 1606190, 10.1080/00927879808826172 |
Reference:
|
[7] Stenström B.: Coherent rings and FP-injective modules.J. London Math. Soc. 2 (1970), 323–329. MR 0258888, 10.1112/jlms/s2-2.2.323 |
Reference:
|
[8] Zhou D.X.: On $n$-coherent rings and $(n,d)$-rings.Comm. Algebra 32 (2004), 2425–2441. Zbl 1089.16001, MR 2100480, 10.1081/AGB-120037230 |
Reference:
|
[9] Zhu Z.: On $n$-coherent rings, $n$-hereditary rings and $n$-regular rings.Bull. Iranian Math. Soc. 37 (2011), 251–267. Zbl 1277.16007, MR 2915464 |
. |