Previous |  Up |  Next

Article

Title: On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds (English)
Author: Aquino, Cícero P.
Author: de Lima, Henrique F.
Author: dos Santos, Fábio R.
Author: Velásquez, Marco Antonio L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 4
Year: 2015
Pages: 515-529
Summary lang: English
.
Category: math
.
Summary: Our aim is to apply suitable generalized maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces immersed in a locally symmetric Riemannian manifold, whose sectional curvature is supposed to obey standard constraints. In this setting, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures one of which is simple. (English)
Keyword: locally symmetric Riemannian manifolds
Keyword: Einstein manifolds
Keyword: complete linear Weingarten hypersurfaces
Keyword: totally umbilical hypersurfaces
Keyword: isoparametric hypersurfaces
MSC: 53A10
MSC: 53C20
MSC: 53C42
MSC: 53C50
idZBL: Zbl 06537721
idMR: MR3434226
DOI: 10.14712/1213-7243.2015.137
.
Date available: 2015-12-17T11:51:24Z
Last updated: 2018-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/144756
.
Reference: [1] Alencar H., do Carmo M.: Hypersurfaces with constant mean curvature in spheres.Proc. Amer. Math. Soc. 120 (1994), 1223–1229. Zbl 0802.53017, MR 1172943, 10.1090/S0002-9939-1994-1172943-2
Reference: [2] Alías L.J., de Lira J.H.S., Malacarne J.M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces.J. Inst. Math. Jussieu 5 (2006), 527–562. Zbl 1118.53038, MR 2261223, 10.1017/S1474748006000077
Reference: [3] Alías L.J., García-Martínez S.C.: On the scalar curvature of constant mean curvature hypersurfaces in space forms.J. Math. Anal. Appl. 363 (2010), 579–587. Zbl 1182.53052, MR 2564877, 10.1016/j.jmaa.2009.09.045
Reference: [4] Alías L.J., García-Martínez S.C., Rigoli M.: A maximum principle for hypersurfaces with constant scalar curvature and applications.Ann. Glob. Anal. Geom. 41 (2012), 307–320. Zbl 1237.53044, MR 2886200, 10.1007/s10455-011-9284-y
Reference: [5] Alías L.J., Impera D., Rigoli M.: Hypersurfaces of constant higher order mean curvature in warped products.Trans. Amer. Math. Soc. 365 (2013), 591–621. Zbl 1276.53064, MR 2995367, 10.1090/S0002-9947-2012-05774-6
Reference: [6] Aquino C.P., de Lima H.F., Velásquez M.A.L.: A new characterization of complete linear Weingarten hypersurfaces in real space forms.Pacific J. Math. 261 (2013), 33–43. Zbl 1273.53051, MR 3037557, 10.2140/pjm.2013.261.33
Reference: [7] Brasil A. Jr., Colares A.G., Palmas O.: Complete hypersurfaces with constant scalar curvature in spheres.Monatsh. Math. 161 (2010), 369–380. Zbl 1201.53068, MR 2734966, 10.1007/s00605-009-0128-9
Reference: [8] Caminha A.: On hypersurfaces into Riemannian spaces of constant sectional curvature.Kodai Math. J. 29 (2006), 185–210. Zbl 1107.53037, MR 2247430, 10.2996/kmj/1151936435
Reference: [9] Caminha A.: The geometry of closed conformal vector fields on Riemannian spaces.Bull. Braz. Math. Soc. 42 (2011), 277–300. Zbl 1242.53068, MR 2833803, 10.1007/s00574-011-0015-6
Reference: [10] Cheng S.Y., Yau S.T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. Zbl 0349.53041, MR 0431043, 10.1007/BF01425237
Reference: [11] L. Karp: On Stokes' theorem for noncompact manifolds.Proc. American Math. Soc. 82 (1981), 487–490. Zbl 0471.31004, MR 0612746
Reference: [12] Li H., Suh Y.J., Wei G.: Linear Weingarten hypersurfaces in a unit sphere.Bull. Korean Math. Soc. 46 (2009), 321–329. MR 2502796, 10.4134/BKMS.2009.46.2.321
Reference: [13] Okumura M.: Hypersurfaces and a pinching problem on the second fundamental tensor.Amer. J. Math. 96 (1974), 207–213. Zbl 0302.53028, MR 0353216, 10.2307/2373587
Reference: [14] Otsuki T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature.Amer. J. Math. 92 (1970), 145–173. Zbl 0196.25102, MR 0264565, 10.2307/2373502
Reference: [15] Pigola S., Rigoli M., Setti A.G.: Maximum principles on Riemannian manifolds and applications.Mem. Amer. Math. Soc. 822 (2005). Zbl 1075.58017, MR 2116555
Reference: [16] Shiohama K., Xu H.: The topological sphere theorem for complete submanifolds.Compositio Math. 107 (1997), 221–232. MR 1458750, 10.1023/A:1000189116072
Reference: [17] Wang M.J., Hong Y.: Hypersurfaces with constant mean curvature in a locally symmetric manifold.Soochow J. Math. 33 (2007), 1–15. Zbl 1132.53032, MR 2294743
Reference: [18] Wu B.Y.: On hypersurfaces with two distinct principal curvatures in a unit sphere.Diff. Geom. Appl. 27 (2009), 623–634. MR 2567840, 10.1016/j.difgeo.2009.05.001
Reference: [19] Xu H., Ren X.: Closed hypersurfaces with constant mean curvature in a symmetric manifold.Osaka J. Math. 45 (2008), 747–756. MR 2468591
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-4_6.pdf 252.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo