Previous |  Up |  Next

Article

Title: Some Applications of new Modified q-Szász–Mirakyan Operators (English)
Author: PATHAK, Ramesh P.
Author: SAHOO, Shiv Kumar
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 54
Issue: 2
Year: 2015
Pages: 71-82
Summary lang: English
.
Category: math
.
Summary: This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on $[0,\infty )$. Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators. (English)
Keyword: q-analogue Baskakov operators
Keyword: q-Durrmeyer operators
Keyword: rate of convergence
Keyword: weighted approximation
MSC: 41A25
MSC: 41A35
idZBL: Zbl 1347.41023
idMR: MR3469692
.
Date available: 2015-12-21T17:08:42Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144764
.
Reference: [1] Aral, A., Gupta, V.: Generalized q-Baskakov operators. Math. Slovaca 61, 4 (2011), 619–634. Zbl 1265.41050, MR 2813872, 10.2478/s12175-011-0032-3
Reference: [2] Aral, A., Gupta, V.: On the Durrmeyer type modification of the q-Baskakov type operators. Nonlinear Anal. 72 (2010), 1171–1180. Zbl 1180.41012, MR 2577517, 10.1016/j.na.2009.07.052
Reference: [3] Kasana, H. S., Prasad, G., Agrawal, P. N., Sahai, A.: Modified Szász operators. In: Proc. of Int. Con. on Math. Anal. and its Appl. Pergamon Press (1985), 29–41. MR 0951655
Reference: [4] Sharma, H.: Note on approximation properties of generalized Durrmeyer operators. Mathematical Sciences 6, 1:24 (2012), 1–6. Zbl 1264.41017, MR 3002753, 10.1186/2251-7456-6-24
Reference: [5] Sharma, H., Aujla, S. J.: A certain family of mixed summation-integral-type Lupas–Phillips–Bernstein operators. Math. Sci. 6, 1:26 (2012), 1–9. Zbl 1264.41018, MR 3030364, 10.1186/2251-7456-6-26
Reference: [6] Burgin, M., Duman, O.: Approximations by linear operators in spaces of fuzzy continuous functions. Positivity 15 (2011), 57–72. Zbl 1222.41031, MR 2782747, 10.1007/s11117-009-0041-4
Reference: [7] Orkcu, M., Dorgu, O.: Statistical approximation of a kind of Kantorovich type q-Szász–Mirakjan operators. Nonlinear Anal. 75, 5 (2012), 2874–2882. MR 2878482, 10.1016/j.na.2011.11.029
Reference: [8] Deo, N.: Faster rate of convergence on Srivastava-Gupta operators. Appl. Math. Compute. 218 (2012), 10486–10491. Zbl 1259.41031, MR 2927065, 10.1016/j.amc.2012.04.012
Reference: [9] Deo, N., Noor, M. A., Siddiqui, M. A.: On approximation by class of new Bernstein type operators. Appl. Math. Compute. 201 (2008), 604–612. MR 2431957, 10.1016/j.amc.2007.12.056
Reference: [10] Deo, N., Bhardwaj, N., Singh, S. P.: Simultaneous approximation on generalized Bernstein–Durrmeyer operators. Afr. Mat. 24, 1 (2013), 77–82. Zbl 1263.41010, MR 3019807, 10.1007/s13370-011-0041-y
Reference: [11] Duman, O., Orhan, C.: Statistical approximation by positive linear operators. Studia Math. 161 (2006), 187–197. MR 2033235, 10.4064/sm161-2-6
Reference: [12] Dorgu, O., Duman, O.: Statistical approximation of Meyer–König and Zeller operators based on q-integers. Publ. Math. Debrecen 68 (2006), 199–214. MR 2213551
Reference: [13] Sahoo, S. K., Singh, S. P.: Some approximation results on a special class of positive linear operators. Proc. Math. Soc., B. H. University 24, 4 (2008), 1–9.
Reference: [14] Acar, T., Aral, A., Gupta, V.: Rate of convergence for generalized Szász operators. Bull. Math. Sci. 1 (2011), 99–113. Zbl 1255.41001, MR 2823789, 10.1007/s13373-011-0005-4
Reference: [15] Basakov, V. A.: An example of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk. 131 (1973), 249–251.
.

Files

Files Size Format View
ActaOlom_54-2015-2_5.pdf 318.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo