Previous |  Up |  Next

Article

Title: Relations between constants of motion and conserved functions (English)
Author: Janyška, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 297-313
Summary lang: English
.
Category: math
.
Summary: We study relations between functions on the cotangent bundle of a spacetime which are constants of motion for geodesics and functions on the odd-dimensional phase space conserved by the Reeb vector fields of geometrical structures generated by the metric and an electromagnetic field. (English)
Keyword: phase space
Keyword: infinitesimal symmetry
Keyword: hidden symmetry
Keyword: gravitational contact phase structure
Keyword: almost-cosymplectic-contact phase structure
Keyword: Killing multi-vector field
Keyword: Killing–Maxwell multi-vector field
Keyword: function constant of motions
Keyword: conserved function
MSC: 58A20
MSC: 70G45
MSC: 70H33
MSC: 70H40
MSC: 70H45
idZBL: Zbl 06537732
idMR: MR3449110
DOI: 10.5817/AM2015-5-297
.
Date available: 2016-01-11T10:09:55Z
Last updated: 2017-02-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144772
.
Reference: [1] Crampin, M.: Hidden symmetries and Killing tensors.Reports Math. Phys. 20 (1984), 31–40. DOI: http://dx.doi.org/10.1016/0034-4877(84)90069-7 Zbl 0551.58019, MR 0761328, 10.1016/0034-4877(84)90069-7
Reference: [2] Duval, C., Valent, G.: Quantum integrability of quadratic Killing tensors.J. Math. Phys. 46 (5) (2005), 053516. DOI: http://dx.doi.org/10.1063/1.1899986 Zbl 1110.81116, MR 2143025, 10.1063/1.1899986
Reference: [3] Iwai, T.: Symmetries in relativistic dynamics of a charged particle.Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. Zbl 0339.53039, MR 0434248
Reference: [4] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity.AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2011, pp. 135–140. DOI: http://dx.doi.org/10.1063/1.4733369 10.1063/1.4733369
Reference: [5] Janyška, J.: Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle.Arch. Math. (Brno) 50 (5) (2014), 297–316. DOI: http://dx.doi.org/10.5817/AM2014-5-297 Zbl 1340.70017, MR 3303779, 10.5817/AM2014-5-297
Reference: [6] Janyška, J.: Special bracket versus Jacobi bracket on the classical phasespace of general relativistic test particle.Int. J. Geom. Methods Mod. Phys. 11 (7) (2014), 1460020. DOI: http://dx.doi.org/10.1142/S0219887814600202 MR 3249642, 10.1142/S0219887814600202
Reference: [7] Janyška, J.: Remarks on infinitesimal symmetries of geometrical structures of the classical phase space of general relativistic test particle.Int. J. Geom. Methods Mod. Phys. 12 (2015), 1560020. DOI: http://dx.doi.org/10.1142/S0219887815600208 MR 3400660, 10.1142/S0219887815600208
Reference: [8] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space.Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. DOI: http://dx.doi.org/10.1142/S021988780800303X Zbl 1160.53008, MR 2445392, 10.1142/S021988780800303X
Reference: [9] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds.J. Math. Pures Appl. (9) 91 (2009), 211–2332. DOI: http://dx.doi.org/10.1016/j.matpur.2008.09.007 Zbl 1163.53051, MR 2498755, 10.1016/j.matpur.2008.09.007
Reference: [10] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales.Acta Appl. Math. 110 (2010), 1249–1276. DOI: http://dx.doi.org/10.1007/s10440-009-9505-6 Zbl 1208.15021, MR 2639169, 10.1007/s10440-009-9505-6
Reference: [11] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space.J. Phys. A: Math. Theor. 45 (2012), 485205. DOI: http://dx.doi.org/10.1088/1751-8113/45/48/485205 Zbl 1339.70036, MR 2998421, 10.1088/1751-8113/45/48/485205
Reference: [12] Olver, P.: Applications of Lie groups to differential equations.Graduate Texts in Mathematics, vol. 107, Springer, 1986. Zbl 0588.22001, MR 0836734, 10.1007/978-1-4684-0274-2_2
Reference: [13] Sommers, P.: On Killing tensors and constant of motions.J. Math. Phys. 14 (1973), 787–790. DOI: http://dx.doi.org/10.1063/1.1666395 MR 0329558, 10.1063/1.1666395
.

Files

Files Size Format View
ArchMathRetro_051-2015-5_6.pdf 601.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo