Previous |  Up |  Next


direct summand; $\mathscr {S}$-closed submodule; GCS-module; singular submodule
An $\mathscr {S}$-closed submodule of a module $M$ is a submodule $N$ for which $M/N$ is nonsingular. A module $M$ is called a generalized CS-module (or briefly, GCS-module) if any $\mathscr {S}$-closed submodule $N$ of $M$ is a direct summand of $M$. Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right $R$-modules are projective if and only if all right $R$-modules are GCS-modules.
[1] Birkenmeier, G. F., Müller, B. J., Rizvi, S. Tariq: Modules in which every fully invariant submodule is essential in a direct summand. Commun. Algebra 30 (2002), 1395-1415. DOI 10.1080/00927870209342387 | MR 1892606
[2] Chatters, A. W., Khuri, S. M.: Endomorphism rings of modules over non-singular CS rings. J. Lond. Math. Soc., II. Ser. 21 (1980), 434-444. DOI 10.1112/jlms/s2-21.3.434 | MR 0577719 | Zbl 0432.16017
[3] Faith, C.: Algebra. Vol. II: Ring Theory. Grundlehren der Mathematischen Wissenschaften 191 Springer, Berlin (1976), German. MR 0427349 | Zbl 0335.16002
[4] Goodearl, K. R.: Ring Theory. Nonsingular Rings and Modules. Pure and Applied Mathematics 33 Marcel Dekker, New York (1976). MR 0429962 | Zbl 0336.16001
[5] McAdam, S.: Deep decompositions of modules. Commun. Algebra 26 (1998), 3953-3967. DOI 10.1080/00927879808826387 | MR 1661248 | Zbl 0937.13003
[6] Nguyen, V. D., Dinh, V. H., Smith, P. F., Wisbauer, R.: Extending Modules. Pitman Research Notes in Mathematics Series 313 Longman Scientific & Technical, Harlow (1994). MR 1312366 | Zbl 0841.16001
[7] Wisbauer, R.: Foundations of Module and Ring Theory. Algebra, Logic and Applications 3 Gordon and Breach Science Publishers, Philadelphia (1991). MR 1144522 | Zbl 0746.16001
Partner of
EuDML logo