Previous |  Up |  Next

Article

Keywords:
ideal; commutative ring; order complex; homotopy type
Summary:
Order complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when it is homotopy equivalent to a sphere.
References:
[1] Clark, E., Ehrenborg, R.: The Frobenius complex. Ann. Comb. 16 (2012), 215-232. DOI 10.1007/s00026-012-0127-8 | MR 2927604 | Zbl 1302.06003
[2] Hatcher, A.: Algebraic Topology. Cambridge University Press Cambridge (2002). MR 1867354 | Zbl 1044.55001
[3] Hersh, P., Shareshian, J.: Chains of modular elements and lattice connectivity. Order 23 (2006), 339-342. DOI 10.1007/s11083-006-9053-x | MR 2309698 | Zbl 1118.06002
[4] Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics 21 Springer, Berlin (2008). MR 2361455 | Zbl 1157.57300
[5] Margolis, S. W., Saliola, F., Steinberg, B.: Combinatorial topology and the global dimension of algebras arising in combinatorics. J. Eur. Math. Soc. 17 (2015), 3037-3080. DOI 10.4171/JEMS/579 | MR 3429159
[6] Meshulam, R.: On the homological dimension of lattices. Order 25 (2008), 153-155. DOI 10.1007/s11083-008-9086-4 | MR 2425950 | Zbl 1159.06006
[7] Munkres, J. R.: Elements of Algebraic Topology. Advanced Book Program Addison-Wesley Publishing Company, Menlo Park, California (1984). MR 0755006 | Zbl 0673.55001
[8] Patassini, M.: On the (non-)contractibility of the order complex of the coset poset of an alternating group. J. Algebra 343 (2011), 37-77. DOI 10.1016/j.jalgebra.2011.05.042 | MR 2824544
[9] Shareshian, J., Woodroofe, R.: Order complexes of coset posets of finite groups are not contractible. (to appear) in Adv. Math.
[10] Shelton, B.: Splitting Algebras II: The Cohomology Algebra. (to appear) in arXiv:1208. 2202.
[11] Vassiliev, V. A.: Topology of discriminants and their complements. Proc. of the International Congress of Mathematicians, ICM'94, 1994, Zürich, Switzerland. Vol. I, II S. D. Chatterji Birkhäuser Basel (1995), 209-226. MR 1403923 | Zbl 0852.55003
[12] Wachs, M. L.: Poset topology: tools and applications. Geometric Combinatorics E. Miller et al. IAS/Park City Math. Ser. 13 American Mathematical Society; Princeton: Institute for Advanced Studies, Providence (2007), 497-615. MR 2383132 | Zbl 1135.06001
Partner of
EuDML logo