Previous |  Up |  Next

Article

Title: Atomic decomposition of predictable martingale Hardy space with variable exponents (English)
Author: Hao, Zhiwei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1033-1045
Summary lang: English
.
Category: math
.
Summary: This paper is mainly devoted to establishing an atomic decomposition of a predictable martingale Hardy space with variable exponents defined on probability spaces. More precisely, let $(\Omega , \mathcal {F}, \mathbb {P})$ be a probability space and $p(\cdot )\colon \Omega \rightarrow (0,\infty )$ be a $\mathcal {F}$-measurable function such that $0<\inf \nolimits _{x\in \Omega }p(x)\leq \sup \nolimits _{x\in \Omega }p(x)<\infty $. It is proved that a predictable martingale Hardy space $\mathcal P_{p(\cdot )}$ has an atomic decomposition by some key observations and new techniques. As an application, we obtain the boundedness of fractional integrals on the predictable martingale Hardy space with variable exponents when the stochastic basis is regular. (English)
Keyword: variable exponent
Keyword: atomic decomposition
Keyword: martingale Hardy space
Keyword: fractional integral
MSC: 60G42
MSC: 60G46
idZBL: Zbl 06537709
idMR: MR3441334
DOI: 10.1007/s10587-015-0226-x
.
Date available: 2016-01-13T09:18:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144791
.
Reference: [1] Chao, J.-A., Ombe, H.: Commutators on dyadic martingales.Proc. Japan Acad., Ser. A 61 (1985), 35-38. Zbl 0596.47024, MR 0798032
Reference: [2] Cheung, K. L., Ho, K.-P.: Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent.Czech. Math. J. 64 (2014), 159-171. MR 3247452, 10.1007/s10587-014-0091-z
Reference: [3] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis Birkhäuser, New York (2013). Zbl 1268.46002, MR 3026953
Reference: [4] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable {$L^p$} spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. Zbl 1100.42012, MR 2210118
Reference: [5] Cruz-Uribe, D., Wang, L.-A. D.: Variable Hardy spaces.Indiana Univ. Math. J. 63 (2014), 447-493. Zbl 1311.42053, MR 3233216, 10.1512/iumj.2014.63.5232
Reference: [6] Diening, L.: Maximal function on generalized Lebesgue spaces {$L^{p(\cdot)}$}.Math. Inequal. Appl. 7 (2004), 245-253. Zbl 1071.42014, MR 2057643
Reference: [7] Diening, L., H{ä}stö, P., Roudenko, S.: Function spaces of variable smoothness and integrability.J. Funct. Anal. 256 (2009), 1731-1768. Zbl 1179.46028, MR 2498558, 10.1016/j.jfa.2009.01.017
Reference: [8] Fan, X., Zhao, D.: On the spaces {$L^{p(x)}(\Omega)$} and {$W^{m,p(x)}(\Omega)$}.J. Math. Anal. Appl. 263 (2001), 424-446. Zbl 1028.46041, MR 1866056
Reference: [9] Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents.Fract. Calc. Appl. Anal. 18 (2015), 1128-1145. MR 3417085
Reference: [10] Ho, K.-P.: John-Nirenberg inequalities on Lebesgue spaces with variable exponents.Taiwanese J. Math. 18 (2014), 1107-1118. MR 3245432, 10.11650/tjm.18.2014.3618
Reference: [11] Jiao, Y., Peng, L., Liu, P.: Atomic decompositions of Lorentz martingale spaces and applications.J. Funct. Spaces Appl. 7 (2009), 153-166. MR 2541232, 10.1155/2009/465079
Reference: [12] Jiao, Y., Wu, L., Yang, A., Yi, R.: The predual and John-Nirenberg inequalities on generalized BMO martingale spaces.(to appear) in Trans. Amer. Math. Soc (2014), arXiv:1408.4641v1 [math.FA], 20 Aug. 2014. MR 3557784
Reference: [13] Jiao, Y., Xie, G., Zhou, D.: Dual spaces and John-Nirenberg inequalities of martingale Hardy-Lorentz-Karamata spaces.Q. J. Math. 66 (2015), 605-623. Zbl 1317.42021, MR 3356840, 10.1093/qmath/hav003
Reference: [14] Kováčik, O., Rákosník, J.: On spaces {$L^{p(x)}$} and {$W^{k,p(x)}$}.Czech. Math. J. 41 (1991), 592-618. MR 1134951
Reference: [15] Liu, P., Hou, Y.: Atomic decompositions of Banach-space-valued martingales.Sci. China, Ser. A 42 (1999), 38-47. Zbl 0928.46020, MR 1692138, 10.1007/BF02872048
Reference: [16] Miyamoto, T., Nakai, E., Sadasue, G.: Martingale Orlicz-Hardy spaces.Math. Nachr. 285 (2012), 670-686. Zbl 1260.60082, MR 2902839, 10.1002/mana.201000109
Reference: [17] Nakai, E., Sadasue, G.: Martingale Morrey-Campanato spaces and fractional integrals.J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages. Zbl 1254.46035, MR 2944703
Reference: [18] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces.J. Funct. Anal. 262 (2012), 3665-3748. Zbl 1244.42012, MR 2899976, 10.1016/j.jfa.2012.01.004
Reference: [19] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces.Czech. Math. J. 64 (2014), 209-228. MR 3247456, 10.1007/s10587-014-0095-8
Reference: [20] Orlicz, W.: Über konjugierte Exponentenfolgen.Stud. Math. 3 German (1931), 200-211. Zbl 0003.25203, 10.4064/sm-3-1-200-211
Reference: [21] Sadasue, G.: Fractional integrals on martingale Hardy spaces for $0<p\le1$.Mem. Osaka Kyoiku Univ., Ser. III, Nat. Sci. Appl. Sci. 60 (2011), 1-7. MR 2963747
Reference: [22] Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators.Integral Equations Oper. Theory 77 (2013), 123-148. Zbl 1293.42025, MR 3090168, 10.1007/s00020-013-2073-1
Reference: [23] Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis.Lecture Notes in Mathematics 1568 Springer, Berlin (1994). Zbl 0796.60049, MR 1320508, 10.1007/BFb0073448
Reference: [24] Wu, L., Hao, Z., Jiao, Y.: John-Nirenberg inequalities with variable exponents on probability spaces.Tokyo J. Math. 38 (2) (2015). MR 3448862
Reference: [25] Yi, R., Wu, L., Jiao, Y.: New John-Nirenberg inequalities for martingales.Stat. Probab. Lett. 86 (2014), 68-73. Zbl 1292.60051, MR 3162719, 10.1016/j.spl.2013.12.010
.

Files

Files Size Format View
CzechMathJ_65-2015-4_14.pdf 275.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo