Previous |  Up |  Next

Article

Title: Finitistic dimension and restricted injective dimension (English)
Author: Wu, Dejun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1023-1031
Summary lang: English
.
Category: math
.
Summary: We study the relations between finitistic dimensions and restricted injective dimensions. Let $R$ be a ring and $T$ a left $R$-module with $A=\mathop {\rm End}_RT$. If $_RT$ is selforthogonal, then we show that $\mathop {\rm rid}(T_A)\leq \mathop {\rm findim}(A_A)\leq \mathop {\rm findim}(_RT)+\mathop {\rm rid}(T_A)$. Moreover, if $R$ is a left noetherian ring and $T$ is a finitely generated left \mbox {$R$-module} with finite injective dimension, then $\mathop {\rm rid}(T_A)\leq \mathop {\rm findim}(A_A)\leq \mathop {\rm fin.inj.dim}(_RR)+\mathop {\rm rid}(T_A)$. Also we show by an example that the restricted injective dimensions of a module may be strictly smaller than the Gorenstein injective dimension. (English)
Keyword: finitistic dimension
Keyword: restricted injective dimension
Keyword: tilting module
MSC: 18G10
MSC: 18G20
idZBL: Zbl 06537708
idMR: MR3441333
DOI: 10.1007/s10587-015-0225-y
.
Date available: 2016-01-13T09:16:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144790
.
Reference: [1] Angeleri-Hügel, L., Trlifaj, J.: Tilting theory and the finitistic dimension conjectures.Trans. Am. Math. Soc. 354 (2002), 4345-4358. Zbl 1028.16004, MR 1926879, 10.1090/S0002-9947-02-03066-0
Reference: [2] Asadollahi, J., Salarian, S.: Gorenstein injective dimension for complexes and Iwanaga-Gorenstein rings.Commun. Algebra 34 (2006), 3009-3022. Zbl 1106.13024, MR 2250584, 10.1080/00927870600639815
Reference: [3] Auslander, M., Reiten, I., Smal{ø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36 Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422
Reference: [4] Buan, A. B., Krause, H., Solberg, {Ø.: On the lattice of cotilting modules.AMA, Algebra Montp. Announc. (electronic only) 2002 (2002), Paper 2, 6 pages. Zbl 1012.16014, MR 1882670
Reference: [5] Christensen, L. W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions and \hbox{Cohen}-Macaulayness.J. Algebra 251 (2002), 479-502. Zbl 1073.13501, MR 1900297, 10.1006/jabr.2001.9115
Reference: [6] Green, E. L., Kirkman, E., Kuzmanovich, J.: Finitistic dimensions of finite-dimensional monomial algebras.J. Algebra 136 (1991), 37-50. Zbl 0727.16003, MR 1085118, 10.1016/0021-8693(91)90062-D
Reference: [7] Smal{ø, S. O.: Homological differences between finite and infinite dimensional representations of algebras.Infinite Length Modules. Proceedings of the Conference, Bielefeld, Germany, 1998 H. Krause et al. Trends Math. Birkhäuser, Basel (2000), 425-439. Zbl 0991.16002, MR 1798916
Reference: [8] Wei, J.: Finitistic dimension and restricted flat dimension.J. Algebra 320 (2008), 116-127. Zbl 1160.16003, MR 2417981, 10.1016/j.jalgebra.2008.03.017
Reference: [9] Xi, C.: On the finitistic dimension conjecture. II. Related to finite global dimension.Adv. Math. 201 (2006), 116-142. Zbl 1103.18011, MR 2204752, 10.1016/j.aim.2005.02.002
.

Files

Files Size Format View
CzechMathJ_65-2015-4_13.pdf 245.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo