Title:
|
$AF$-algebras and topology of mapping tori (English) |
Author:
|
Nikolaev, Igor |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
1069-1083 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper studies applications of $C^*$-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of $AF$-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding $AF$-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension $2$, $3$ and $4$. In conclusion, we consider two numerical examples illustrating our main results. (English) |
Keyword:
|
Anosov diffeomorphism |
Keyword:
|
$AF$-algebra |
MSC:
|
46L85 |
MSC:
|
55S35 |
idZBL:
|
Zbl 06537711 |
idMR:
|
MR3441336 |
DOI:
|
10.1007/s10587-015-0228-8 |
. |
Date available:
|
2016-01-13T09:24:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144793 |
. |
Reference:
|
[1] Anosov, D. V.: Geodesic flows on closed Riemannian manifolds of negative curvature.Trudy Mat. Inst. Steklov. 90 Russian (1967), 209. MR 0224110 |
Reference:
|
[2] Bauer, M.: A characterization of uniquely ergodic interval exchange maps in terms of the Jacobi-Perron algorithm.Bol. Soc. Bras. Mat., Nova Sér. 27 (1996), 109-128. Zbl 0877.11044, MR 1418928, 10.1007/BF01259355 |
Reference:
|
[3] Bernstein, L.: The Jacobi-Perron Algorithm. Its Theory and Application.Lecture Notes in Mathematics 207 Springer, Berlin (1971). Zbl 0213.05201, MR 0285478, 10.1007/BFb0069405 |
Reference:
|
[4] Bratteli, O.: Inductive limits of finite dimensional {$C^{\ast} $}-algebras.Trans. Am. Math. Soc. 171 (1972), 195-234. MR 0312282 |
Reference:
|
[5] Effros, E. G.: Dimensions and $C^\ast $-Algebras.Regional Conference Series in Mathematics 46 Conference Board of the Mathematical Sciences, Washington, AMS, Providence (1981). MR 0623762 |
Reference:
|
[6] H. B. Lawson, Jr.: Foliations.Bull. Am. Math. Soc. 80 (1974), 369-418. Zbl 0293.57014, MR 0343289, 10.1090/S0002-9904-1974-13432-4 |
Reference:
|
[7] Morandi, P.: Field and Galois Theory.Graduate Texts in Mathematics 167 Springer, New York (1996). Zbl 0865.12001, MR 1410264, 10.1007/978-1-4612-4040-2 |
Reference:
|
[8] Plante, J. F.: Foliations with measure preserving holonomy.Ann. Math. (2) 102 (1975), 327-361. Zbl 0314.57018, MR 0391125 |
Reference:
|
[9] Smale, S.: Differentiable dynamical systems.Bull. Am. Math. Soc. 73 (1967), 747-817. Zbl 0202.55202, MR 0228014, 10.1090/S0002-9904-1967-11798-1 |
Reference:
|
[10] Thurston, W. P.: On the geometry and dynamics of diffeomorphisms of surfaces.Bull. Am. Math. Soc., New Ser. 19 (1988), 417-431. Zbl 0674.57008, MR 0956596, 10.1090/S0273-0979-1988-15685-6 |
. |