Previous |  Up |  Next

Article

Title: $AF$-algebras and topology of mapping tori (English)
Author: Nikolaev, Igor
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1069-1083
Summary lang: English
.
Category: math
.
Summary: The paper studies applications of $C^*$-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of $AF$-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding $AF$-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension $2$, $3$ and $4$. In conclusion, we consider two numerical examples illustrating our main results. (English)
Keyword: Anosov diffeomorphism
Keyword: $AF$-algebra
MSC: 46L85
MSC: 55S35
idZBL: Zbl 06537711
idMR: MR3441336
DOI: 10.1007/s10587-015-0228-8
.
Date available: 2016-01-13T09:24:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144793
.
Reference: [1] Anosov, D. V.: Geodesic flows on closed Riemannian manifolds of negative curvature.Trudy Mat. Inst. Steklov. 90 Russian (1967), 209. MR 0224110
Reference: [2] Bauer, M.: A characterization of uniquely ergodic interval exchange maps in terms of the Jacobi-Perron algorithm.Bol. Soc. Bras. Mat., Nova Sér. 27 (1996), 109-128. Zbl 0877.11044, MR 1418928, 10.1007/BF01259355
Reference: [3] Bernstein, L.: The Jacobi-Perron Algorithm. Its Theory and Application.Lecture Notes in Mathematics 207 Springer, Berlin (1971). Zbl 0213.05201, MR 0285478, 10.1007/BFb0069405
Reference: [4] Bratteli, O.: Inductive limits of finite dimensional {$C^{\ast} $}-algebras.Trans. Am. Math. Soc. 171 (1972), 195-234. MR 0312282
Reference: [5] Effros, E. G.: Dimensions and $C^\ast $-Algebras.Regional Conference Series in Mathematics 46 Conference Board of the Mathematical Sciences, Washington, AMS, Providence (1981). MR 0623762
Reference: [6] H. B. Lawson, Jr.: Foliations.Bull. Am. Math. Soc. 80 (1974), 369-418. Zbl 0293.57014, MR 0343289, 10.1090/S0002-9904-1974-13432-4
Reference: [7] Morandi, P.: Field and Galois Theory.Graduate Texts in Mathematics 167 Springer, New York (1996). Zbl 0865.12001, MR 1410264, 10.1007/978-1-4612-4040-2
Reference: [8] Plante, J. F.: Foliations with measure preserving holonomy.Ann. Math. (2) 102 (1975), 327-361. Zbl 0314.57018, MR 0391125
Reference: [9] Smale, S.: Differentiable dynamical systems.Bull. Am. Math. Soc. 73 (1967), 747-817. Zbl 0202.55202, MR 0228014, 10.1090/S0002-9904-1967-11798-1
Reference: [10] Thurston, W. P.: On the geometry and dynamics of diffeomorphisms of surfaces.Bull. Am. Math. Soc., New Ser. 19 (1988), 417-431. Zbl 0674.57008, MR 0956596, 10.1090/S0273-0979-1988-15685-6
.

Files

Files Size Format View
CzechMathJ_65-2015-4_16.pdf 323.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo