Previous |  Up |  Next

Article

Title: Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type ${\mathbf {A}}_{1}$ (English)
Author: Hou, Bo
Author: Guo, Yanhong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1085-1099
Summary lang: English
.
Category: math
.
Summary: The reconstruction algebra is a generalization of the preprojective algebra, and plays important roles in algebraic geometry and commutative algebra. We consider the homological property of this class of algebras by calculating the Hochschild homology and Hochschild cohomology. Let $\Lambda _{t}$ be the Yoneda algebra of a reconstruction algebra of type ${\mathbf {A}}_{1}$ over a field $\k $. In this paper, a minimal projective bimodule resolution of $\Lambda _{t}$ is constructed, and the $\k $-dimensions of all Hochschild homology and cohomology groups of $\Lambda _{t}$ are calculated explicitly. (English)
Keyword: Hochschild cohomology
Keyword: reconstruction algebra
Keyword: Yoneda algebra
MSC: 16E40
MSC: 16G10
idZBL: Zbl 06537712
idMR: MR3441337
DOI: 10.1007/s10587-015-0229-7
.
Date available: 2016-01-13T09:26:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144794
.
Reference: [1] Avramov, L. L., Vigué-Poirrier, M.: Hochschild homology criteria for smoothness.Int. Math. Res. Not. 1992 (1992), 17-25. Zbl 0755.13006, MR 1149001, 10.1155/S1073792892000035
Reference: [2] Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory.J. Am. Math. Soc. 9 (1996), 473-527. Zbl 0864.17006, MR 1322847, 10.1090/S0894-0347-96-00192-0
Reference: [3] Bergh, P. A., Madsen, D.: Hochschild homology and global dimension.Bull. Lond. Math. Soc. 41 (2009), 473-482. Zbl 1207.16006, MR 2506831, 10.1112/blms/bdp018
Reference: [4] Brieskorn, E.: Rationale Singularitäten komplexer Flächen.Invent. Math. 4 German (1968), 336-358. Zbl 0219.14003, MR 0222084, 10.1007/BF01425318
Reference: [5] Buchweitz, R.-O., Green, E. L., Madsen, D., Solberg, {Ø.: Finite Hochschild cohomology without finite global dimension.Math. Res. Lett. 12 (2005), 805-816. Zbl 1138.16003, MR 2189240, 10.4310/MRL.2005.v12.n6.a2
Reference: [6] Butler, M. C. R., King, A. D.: Minimal resolutions of algebras.J. Algebra 212 (1999), 323-362. Zbl 0926.16006, MR 1670674, 10.1006/jabr.1998.7599
Reference: [7] Cartan, H., Eilenberg, S.: Homological Algebra.Princeton Mathematical Series, Vol. 19 Princeton University Press 15, Princeton (1956). Zbl 0075.24305, MR 0077480
Reference: [8] Cibils, C.: Rigidity of truncated quiver algebras.Adv. Math. 79 (1990), 18-42. Zbl 0703.16009, MR 1031825, 10.1016/0001-8708(90)90057-T
Reference: [9] Gerstenhaber, M.: On the deformation of rings and algebras.Ann. Math. (2) 79 (1964), 59-103. Zbl 0123.03101, MR 0171807, 10.2307/1970484
Reference: [10] Green, E. L.: Noncommutative Gröbner bases, and projective resolutions.Computational Methods for Representations of Groups and Algebras. Proc. of the Euroconf., Essen, Germany, 1997 Progr. Math. 173 Birkhäuser, Basel (1999), 29-60 P. Dr{ä}xler et al. Zbl 0957.16033, MR 1714602
Reference: [11] Green, E. L., Hartman, G., Marcos, E. N., Solberg, {Ø.: Resolutions over Koszul algebras.Arch. Math. 85 (2005), 118-127. Zbl 1096.16011, MR 2161801, 10.1007/s00013-005-1299-9
Reference: [12] Green, E., Huang, R. Q.: Projective resolutions of straightening closed algebras generated by minors.Adv. Math. 110 (1995), 314-333. Zbl 0824.13012, MR 1317620, 10.1006/aima.1995.1013
Reference: [13] Han, Y.: Hochschild (co)homology dimension.J. Lond. Math. Soc., (2) 73 (2006), 657-668. Zbl 1139.16010, MR 2241972, 10.1112/S002461070602299X
Reference: [14] Happel, D.: Hochschild cohomology of finite-dimensional algebras.Séminaire D'Algèbre Paul Dubreil et Marie-Paul Malliavin, Proc. of the Seminar, Paris, 1987-1988 Lecture Notes in Math. 1404 Springer, Berlin (1989), 108-126 M. -P. Malliavin. Zbl 0688.16033, MR 1035222
Reference: [15] Hou, B., Xu, Y.: Hochschild (co)homology of ${\mathbb{Z}}_{n}$-Galois coverings of exterior algebras in two variables.Acta Math. Sin., Chin. Ser. 51 (2008), 241-252. MR 2436288
Reference: [16] Igusa, K.: Notes on the no loops conjecture.J. Pure Appl. Algebra 69 (1990), 161-176. Zbl 0772.16007, MR 1086558, 10.1016/0022-4049(90)90040-O
Reference: [17] Iyama, O., Wemyss, M.: The classification of special Cohen-Macaulay modules.Math. Z. 265 (2010), 41-83. Zbl 1192.13012, MR 2606949, 10.1007/s00209-009-0501-3
Reference: [18] Loday, J. L.: Cyclic Homology.Grundlehren der Mathematischen Wissenschaften 301, Springer Berlin (1992). Zbl 0780.18009, MR 1217970
Reference: [19] Skowroński, A.: Simply connected algebras and Hochschild cohomology.Representations of Algebras. Proc. of the 6. Int. Conf., Carleton University, Ottawa, Canada, 1992, CMS Conf. Proc. 14 AMS, Providence V. Dlab et al. (1993), 431-447. MR 1265301
Reference: [20] Snashall, N., Taillefer, R.: The Hochschild cohomology ring of a class of special biserial algebras.J. Algebra Appl. 9 (2010), 73-122. Zbl 1266.16006, MR 2642814, 10.1142/S0219498810003781
Reference: [21] Wemyss, M.: Reconstruction algebras of type {$D$} (II).Hokkaido Math. J. 42 (2013), 293-329. MR 3112460, 10.14492/hokmj/1372859589
Reference: [22] Wemyss, M.: Reconstruction algebras of type {$D$} (I).J. Algebra 356 (2012), 158-194. Zbl 1278.16016, MR 2891127, 10.1016/j.jalgebra.2012.01.019
Reference: [23] Wemyss, M.: Reconstruction algebras of type {$A$}.Trans. Am. Math. Soc. 363 (2011), 3101-3132. Zbl 1270.16022, MR 2775800, 10.1090/S0002-9947-2011-05130-5
Reference: [24] Wemyss, M.: The {$ GL(2,\Bbb C)$} McKay correspondence.Math. Ann. 350 (2011), 631-659. MR 2805639
Reference: [25] Wunram, J.: Reflexive modules on cyclic quotient surface singularities.Singularities, Representation of Algebras, and Vector Bundles, Proc. of the Symp., Lambrecht, Germany, 1985 Lecture Notes in Math. 1273 Springer, Berlin (1987), 221-231 G. -M. Greuel et al. Zbl 0638.14006, MR 0915177
.

Files

Files Size Format View
CzechMathJ_65-2015-4_17.pdf 306.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo