Previous |  Up |  Next

Article

Title: Remarks on the behaviour of higher-order derivations on the gluing of differential spaces (English)
Author: Drachal, Krzysztof
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1137-1154
Summary lang: English
.
Category: math
.
Summary: This paper is about some geometric properties of the gluing of order $k$ in the category of Sikorski differential spaces, where $k$ is assumed to be an arbitrary natural number. Differential spaces are one of possible generalizations of the concept of an infinitely differentiable manifold. It is known that in many (very important) mathematical models, the manifold structure breaks down. Therefore it is important to introduce a more general concept. In this paper, in particular, the behaviour of $k^{\rm th}$ order tangent spaces, their dimensions, and other geometric properties, are described in the context of the process of gluing differential spaces. At the end some examples are given. The paper is self-consistent, i.e., a short review of the differential spaces theory is presented at the beginning. (English)
Keyword: gluing of differential space
Keyword: higher-order differential geometry
Keyword: Sikorski differential space
MSC: 58A40
idZBL: Zbl 06537715
idMR: MR3441340
DOI: 10.1007/s10587-015-0232-z
.
Date available: 2016-01-13T09:32:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144797
.
Reference: [1] Batubenge, A., Iglesias-Zemmour, P., Karshon, Y., Watts, J.: Diffeological, Frölicher, and differential spaces. Preprint (2013). http://www.math.illinois.edu/ {jawatts/papers/reflexive.pdf}..
Reference: [2] Bröcker, T., Jänich, K.: Introduction to Differential Topology.Cambridge University Press, Cambridge (1982). Zbl 0486.57001, MR 0674117
Reference: [3] Bucataru, I.: Linear connections for systems of higher order differential equations.Houston J. Math. 31 (2005), 315-332. Zbl 1078.58005, MR 2132839
Reference: [4] Chen, K. T.: Iterated path integrals.Bull. Am. Math. Soc. 83 (1977), 831-879. Zbl 0389.58001, MR 0454968, 10.1090/S0002-9904-1977-14320-6
Reference: [5] Dodson, C. T. J., Galanis, G. N.: Second order tangent bundles of infinite dimensional manifolds.J. Geom. Phys. 52 (2004), 127-136. Zbl 1076.58002, MR 2088972, 10.1016/j.geomphys.2004.02.005
Reference: [6] Drachal, K.: Introduction to $d$-spaces theory.Math. Aeterna 3 (2013), 753-770. Zbl 1298.58008, MR 3157564
Reference: [7] Ebrahim, E., Mhehdi, N.: The tangent bundle of higher order.Proc. of 2nd World Congress of Nonlinear Analysts, Nonlinear Anal., Theory Methods Appl. 30 (1997), 5003-5007. Zbl 0955.58001, MR 1726003
Reference: [8] Epstein, M., Śniatycki, J.: The Koch curve as a smooth manifold.Chaos Solitons Fractals 38 (2008), 334-338. Zbl 1146.28300, MR 2415937, 10.1016/j.chaos.2006.11.036
Reference: [9] G\_infinity ({\tt http://mathoverflow.net/users/22606/g-infinity}), : Extending derivations to the superposition closure (version: 2014-10-23). http://mathoverflow.net/q/182778..
Reference: [10] Gillman, L., Jerison, M.: Rings of Continuous Functions.Graduate Texts in Mathematics 43 Springer, Berlin (1976). Zbl 0327.46040, MR 0407579
Reference: [11] Gruszczak, J., Heller, M., Sasin, W.: Quasiregular singularity of a cosmic string.Acta Cosmologica 18 (1992), 45-55.
Reference: [12] Heller, M., Multarzynski, P., Sasin, W., Zekanowski, Z.: Local differential dimension of space-time.Acta Cosmologica 17 (1991), 19-26.
Reference: [13] Heller, M., Sasin, W.: Origin of classical singularities.Gen. Relativ. Gravitation 31 (1999), 555-570. Zbl 0932.83036, MR 1679416, 10.1023/A:1026650424098
Reference: [14] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer, Berlin (1993). MR 1202431
Reference: [15] Kriegl, A., Michor, P. W.: The convenient setting of global analysis.Mathematical Surveys and Monographs 53 American Mathematical Society, Providence (1997). Zbl 0889.58001, MR 1471480, 10.1090/surv/053
Reference: [16] Krupka, D., Krupka, M.: Jets and contact elements.Proceedings of the Seminar on Differential Geometry, Opava, Czech Republic, 2000 Mathematical Publications 2 Silesian University at Opava, Opava (2000), 39-85 D. Krupka. Zbl 1020.58002, MR 1855570
Reference: [17] Kuratowski, C.: Topologie. I.Panstwowe Wydawnictwo Naukowe 13, Warszawa French (1958). MR 0090795
Reference: [18] Mallios, A., Rosinger, E. E.: Space-time foam dense singularities and de Rham cohomology.Acta Appl. Math. 67 (2001), 59-89. Zbl 1005.46020, MR 1847884, 10.1023/A:1010663502915
Reference: [19] Mallios, A., Rosinger, E. E.: Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology.Acta Appl. Math. 55 (1999), 231-250. MR 1686596, 10.1023/A:1006106718337
Reference: [20] Mallios, A., Zafiris, E.: The homological Kähler-de Rham differential mechanism I: Application in general theory of relativity.Adv. Math. Phys. 2011 (2011), Article ID 191083, 14 pages. Zbl 1219.83037, MR 2801347
Reference: [21] Miron, R.: The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics and Physics.Fundamental Theories of Physics 82 Kluwer Academic Publishers, Dordrecht (1997). Zbl 0877.53001, MR 1437362
Reference: [22] Moreno, G.: On the canonical connection for smooth envelopes.Demonstr. Math. (electronic only) 47 (2014), 459-464. Zbl 1293.58002, MR 3217741
Reference: [23] Morimoto, A.: Liftings of tensor fields and connections to tangent bundles of higher order.Nagoya Math. J. 40 (1970), 99-120. Zbl 0208.50201, MR 0279719, 10.1017/S002776300001388X
Reference: [24] Mostow, M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes, and geometric realizations.J. Differ. Geom. 14 (1979), 255-293. Zbl 0427.58005, MR 0587553, 10.4310/jdg/1214434974
Reference: [25] Multarzyński, P., Sasin, W., Żekanowski, Z.: Vectors and vector fields of {$k$}-th order on differential spaces.Demonstr. Math. (electronic only) 24 (1991), 557-572. Zbl 0808.58008, MR 1156985
Reference: [26] Nestruev, J.: Smooth Manifolds and Observables.Graduate Texts in Mathematics 220 Springer, New York (2003). Zbl 1021.58001, MR 1930277
Reference: [27] Newns, W. F., Walker, A. G.: Tangent planes to a differentiable manifold.J. Lond. Math. Soc. 31 (1956), 400-407. Zbl 0071.15303, MR 0084163, 10.1112/jlms/s1-31.4.400
Reference: [28] Pohl, W. F.: Differential geometry of higher order.Topology 1 (1962), 169-211. Zbl 0112.36605, MR 0154293, 10.1016/0040-9383(62)90103-9
Reference: [29] Sardanashvily, G.: Lectures on Differential Geometry of Modules and Rings. Application to Quantum Theory.Lambert Academic Publishing, Saarbrucken (2012).
Reference: [30] Sasin, W.: Gluing of differential spaces.Demonstr. Math. (electronic only) 25 (1992), 361-384. Zbl 0759.58005, MR 1170697
Reference: [31] Sasin, W.: Geometrical properties of gluing of differential spaces.Demonstr. Math. (electronic only) 24 (1991), 635-656. Zbl 0759.58004, MR 1156988
Reference: [32] Sasin, W.: On equivalence relations on a differential space.Commentat. Math. Univ. Carol. 29 (1988), 529-539. Zbl 0679.58001, MR 0972834
Reference: [33] Sasin, W., Spallek, K.: Gluing of differentiable spaces and applications.Math. Ann. 292 (1992), 85-102. Zbl 0735.32020, MR 1141786, 10.1007/BF01444610
Reference: [34] Sikorski, R.: An Introduction to Differential Geometry.Biblioteka matematyczna 42 Panstwowe Wydawnictwo Naukowe, Warszawa Polish (1972). Zbl 0255.53001, MR 0467544
Reference: [35] Sikorski, R.: Differential modules.Colloq. Math. 24 (1971), 45-79. Zbl 0226.53004, MR 0482794, 10.4064/cm-24-1-45-79
Reference: [36] Sikorski, R.: Abstract covariant derivative.Colloq. Math. 18 (1967), 251-272. Zbl 0162.25101, MR 0222799, 10.4064/cm-18-1-251-272
Reference: [37] Śniatycki, J.: Reduction of symmetries of Dirac structures.J. Fixed Point Theory Appl. 10 (2011), 339-358. Zbl 1252.53094, MR 2861565, 10.1007/s11784-011-0063-y
Reference: [38] Śniatycki, J.: Geometric quantization, reduction and decomposition of group representations.J. Fixed Point Theory Appl. 3 (2008), 307-315. Zbl 1149.53323, MR 2434450, 10.1007/s11784-008-0081-6
Reference: [39] Śniatycki, J.: Orbits of families of vector fields on subcartesian spaces.Ann. Inst. Fourier 53 (2003), 2257-2296. Zbl 1048.53060, MR 2044173, 10.5802/aif.2006
Reference: [40] Souriau, J.-M.: Groupes différentiels.Differential Geometrical Methods in Mathematical Physics. Proc. Conf. Aix-en-Provence and Salamanca, 1979 Lecture Notes in Math. 836 Springer, Berlin French (1980), 91-128. Zbl 0501.58010, MR 0607688
Reference: [41] Spallek, K.: Differenzierbare Räume.Math. Ann. 180 German (1969), 269-296. Zbl 0169.52901, MR 0261035
Reference: [42] Vassiliou, E.: Topological algebras and abstract differential geometry.J. Math. Sci., New York 95 (1999), 2669-2680. Zbl 0936.53022, MR 1712993, 10.1007/BF02169286
Reference: [43] Warner, F. W.: Foundations of Differentiable Manifolds and Lie Groups.Graduate Texts in Mathematics 94 Springer, New York (1983). Zbl 0516.58001, MR 0722297, 10.1007/978-1-4757-1799-0
.

Files

Files Size Format View
CzechMathJ_65-2015-4_20.pdf 329.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo