Title:
|
Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source (English) |
Author:
|
Liu, Ji |
Author:
|
Zheng, Jia-Shan |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
1117-1136 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014). (English) |
Keyword:
|
boundedness |
Keyword:
|
chemotaxis |
Keyword:
|
nonlinear logistic source |
MSC:
|
35K59 |
MSC:
|
92C17 |
idZBL:
|
Zbl 06537714 |
idMR:
|
MR3441339 |
DOI:
|
10.1007/s10587-015-0231-0 |
. |
Date available:
|
2016-01-13T09:28:44Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144796 |
. |
Reference:
|
[1] Cao, X.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source.J. Math. Anal. Appl. 412 (2014), 181-188. MR 3145792, 10.1016/j.jmaa.2013.10.061 |
Reference:
|
[2] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2.Acta Appl. Math. 129 (2014), 135-146. Zbl 1295.35123, MR 3152080, 10.1007/s10440-013-9832-5 |
Reference:
|
[3] Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions.J. Differ. Equations 252 (2012), 5832-5851. Zbl 1252.35087, MR 2902137, 10.1016/j.jde.2012.01.045 |
Reference:
|
[4] Herrero, M. A., Velázquez, J. J. L.: A blow-up mechanism for a chemotaxis model.Ann. Sc. Norm. Super. Pisa Cl. Sci. 4. 24 (1997), 633-683. Zbl 0904.35037, MR 1627338 |
Reference:
|
[5] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions.Eur. J. Appl. Math. 12 (2001), 159-177. Zbl 1017.92006, MR 1931303, 10.1017/S0956792501004363 |
Reference:
|
[6] Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system.J. Differ. Equations 215 (2005), 52-107. Zbl 1085.35065, MR 2146345, 10.1016/j.jde.2004.10.022 |
Reference:
|
[7] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability.J. Theor. Biol. 26 (1970), 399-415. Zbl 1170.92306, 10.1016/0022-5193(70)90092-5 |
Reference:
|
[8] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis.Funkc. Ekvacioj. Ser. Int. 40 (1997), 411-433. Zbl 0901.35104, MR 1610709 |
Reference:
|
[9] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations.Funkc. Ekvacioj. Ser. Int. 44 (2001), 441-469. Zbl 1145.37337, MR 1893940 |
Reference:
|
[10] Painter, K. J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement.Can. Appl. Math. Q. 10 (2002), 501-543. Zbl 1057.92013, MR 2052525 |
Reference:
|
[11] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity.J. Differ. Equations 252 (2012), 692-715. MR 2852223, 10.1016/j.jde.2011.08.019 |
Reference:
|
[12] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system.J. Math. Pures Appl. 100 (2013), 748-767. Zbl 1326.35053, MR 3115832, 10.1016/j.matpur.2013.01.020 |
Reference:
|
[13] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model.J. Differ. Equations 248 (2010), 2889-2905. Zbl 1190.92004, MR 2644137, 10.1016/j.jde.2010.02.008 |
Reference:
|
[14] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source.Commun. Partial Differ. Equations 35 (2010), 1516-1537. Zbl 1290.35139, MR 2754053, 10.1080/03605300903473426 |
. |