Previous |  Up |  Next

Article

Title: Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source (English)
Author: Liu, Ji
Author: Zheng, Jia-Shan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1117-1136
Summary lang: English
.
Category: math
.
Summary: We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014). (English)
Keyword: boundedness
Keyword: chemotaxis
Keyword: nonlinear logistic source
MSC: 35K59
MSC: 92C17
idZBL: Zbl 06537714
idMR: MR3441339
DOI: 10.1007/s10587-015-0231-0
.
Date available: 2016-01-13T09:28:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144796
.
Reference: [1] Cao, X.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source.J. Math. Anal. Appl. 412 (2014), 181-188. MR 3145792, 10.1016/j.jmaa.2013.10.061
Reference: [2] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2.Acta Appl. Math. 129 (2014), 135-146. Zbl 1295.35123, MR 3152080, 10.1007/s10440-013-9832-5
Reference: [3] Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions.J. Differ. Equations 252 (2012), 5832-5851. Zbl 1252.35087, MR 2902137, 10.1016/j.jde.2012.01.045
Reference: [4] Herrero, M. A., Velázquez, J. J. L.: A blow-up mechanism for a chemotaxis model.Ann. Sc. Norm. Super. Pisa Cl. Sci. 4. 24 (1997), 633-683. Zbl 0904.35037, MR 1627338
Reference: [5] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions.Eur. J. Appl. Math. 12 (2001), 159-177. Zbl 1017.92006, MR 1931303, 10.1017/S0956792501004363
Reference: [6] Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system.J. Differ. Equations 215 (2005), 52-107. Zbl 1085.35065, MR 2146345, 10.1016/j.jde.2004.10.022
Reference: [7] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability.J. Theor. Biol. 26 (1970), 399-415. Zbl 1170.92306, 10.1016/0022-5193(70)90092-5
Reference: [8] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis.Funkc. Ekvacioj. Ser. Int. 40 (1997), 411-433. Zbl 0901.35104, MR 1610709
Reference: [9] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations.Funkc. Ekvacioj. Ser. Int. 44 (2001), 441-469. Zbl 1145.37337, MR 1893940
Reference: [10] Painter, K. J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement.Can. Appl. Math. Q. 10 (2002), 501-543. Zbl 1057.92013, MR 2052525
Reference: [11] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity.J. Differ. Equations 252 (2012), 692-715. MR 2852223, 10.1016/j.jde.2011.08.019
Reference: [12] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system.J. Math. Pures Appl. 100 (2013), 748-767. Zbl 1326.35053, MR 3115832, 10.1016/j.matpur.2013.01.020
Reference: [13] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model.J. Differ. Equations 248 (2010), 2889-2905. Zbl 1190.92004, MR 2644137, 10.1016/j.jde.2010.02.008
Reference: [14] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source.Commun. Partial Differ. Equations 35 (2010), 1516-1537. Zbl 1290.35139, MR 2754053, 10.1080/03605300903473426
.

Files

Files Size Format View
CzechMathJ_65-2015-4_19.pdf 299.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo