Previous |  Up |  Next

Article

Title: On European option pricing under partial information (English)
Author: Wu, Meng
Author: Lu, Jue
Author: Huang, Nan-jing
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 1
Year: 2016
Pages: 61-77
Summary lang: English
.
Category: math
.
Summary: We consider a European option pricing problem under a partial information market, i.e., only the security's price can be observed, the rate of return and the noise source in the market cannot be observed. To make the problem tractable, we focus on gap option which is a generalized form of the classical European option. By using the stochastic analysis and filtering technique, we derive a Black-Scholes formula for gap option pricing with dividends under partial information. Finally, we apply filtering technique to solve a utility maximization problem under partial information through transforming the problem under partial information into the classical problem. (English)
Keyword: option pricing
Keyword: European option
Keyword: partial information
Keyword: backward stochastic differential equation
MSC: 60H10
MSC: 91B24
MSC: 93E11
idZBL: Zbl 06562147
idMR: MR3455168
DOI: 10.1007/s10492-016-0122-1
.
Date available: 2016-01-19T14:02:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144812
.
Reference: [1] Ballestra, L. V., Pacelli, G.: The constant elasticity of variance model: calibration, test and evidence from the Italian equity market.Applied Financial Economics 21 (2011), 1479-1487. 10.1080/09603107.2011.579058
Reference: [2] Black, F., Scholes, M.: The pricing of options and corporate liabilities.J. Political Econ. 81 (1973), 637-654. Zbl 1092.91524, 10.1086/260062
Reference: [3] Cox, J.: Notes on option pricing I: Constant elasticity of variance diffusions.Working paper, Stanford University (1975) {https://www.researchgate.net/publication/239062860_Notes_on_Option_Pricing_I_Constant_Elasticity_of_Variance_Diffusions}.
Reference: [4] Cox, J. C., Ross, S. A.: The valuation of options for alternative stochastic processes.Journal of Financial Economics 3 (1976), 145-166. 10.1016/0304-405X(76)90023-4
Reference: [5] Duffie, D.: Security Markets. Stochastic Models.Economic Theory, Econometrics, and Mathematical Economics Academic Press, Boston (1988). Zbl 0661.90001, MR 0955269
Reference: [6] Karoui, N. El, Peng, S., Quenez, M. C.: Backward stochastic differential equations in finance.Math. Finance 7 (1997), 1-71. Zbl 0884.90035, MR 1434407, 10.1111/1467-9965.00022
Reference: [7] Emanuel, D. C., MacBeth, J. D.: Further results on the constant elasticity of variance call option pricing model.J. Financial Quant. Anal. 17 (1982), 533-554. 10.2307/2330906
Reference: [8] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus.Graduate Texts in Mathematics 113 Springer, New York (1988). Zbl 0638.60065, MR 0917065, 10.1007/978-1-4684-0302-2_2
Reference: [9] Karatzas, I., Shreve, S. E.: Methods of Mathematical Finance.Applications of Mathematics 39 Springer, Berlin (1998). Zbl 0941.91032, MR 1640352
Reference: [10] Lakner, P.: Utility maximization with partial information.Stochastic Processes Appl. 56 (1995), 247-273. Zbl 0834.90022, MR 1325222, 10.1016/0304-4149(94)00073-3
Reference: [11] Lakner, P.: Optimal trading strategy for an investor: the case of partial information.Stochastic Processes Appl. 76 (1998), 77-97. Zbl 0934.91021, MR 1637952, 10.1016/S0304-4149(98)00032-5
Reference: [12] Liptser, R. S., Shiryayev, A. N.: Statistics of Random Processes. I. General Theory.Applications of Mathematics 5 Springer, New York (1977). Zbl 0364.60004, MR 0474486
Reference: [13] Liptser, R. S., Shiryayev, A. N.: Statistics of Random Processes. II. Applications.Applications of Mathematics 6 Springer, New York (1978). Zbl 0369.60001, MR 0488267
Reference: [14] Ma, J., Yong, J.: Forward-Backward Stochastic Differential Equations and Their Applications.Lecture Notes in Mathematics 1702 Springer, Berlin (1999). Zbl 0927.60004, MR 1704232
Reference: [15] Merton, R. C.: Theory of rational option pricing.Bell J. Econ. Manag. Sci. 4 (1973), 141-183. MR 0496534, 10.2307/3003143
Reference: [16] Merton, R. C.: Continuous-Time Finance.Blackwell, Cambridge (1999). Zbl 1019.91502
Reference: [17] Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications.Universitext Springer, Berlin (1998). Zbl 0897.60056
Reference: [18] Wu, Z., Wang, G. C.: A Black-Scholes formula for option pricing with dividends and optimal investment problems under partial information.J. Syst. Sci. Math. Sci. 27 Chinese (2007), 676-683. Zbl 1150.91397, MR 2375534
.

Files

Files Size Format View
AplMat_61-2016-1_4.pdf 291.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo