Previous |  Up |  Next


measurement errors; minimum distance estimates; rank tests
In this paper a new rank test in a linear regression model is introduced. The test statistic is based on a certain minimum distance estimator, however, unlike classical rank tests in regression it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived, and further, the asymptotic distribution both under the null hypothesis and the local alternative is investigated. It is shown that the proposed test is applicable in measurement error models. Finally, a simulation study is conducted to show a good performance of the test. It has, in some situations, a greater power than the widely used Wilcoxon rank test.
[1] Adcock, R. J.: Note on the method of least squares. The Analyst 4 (1877), 183-184. DOI 10.2307/2635777
[2] Anderson, T., Darling, D.: Asymptotic theory of certain goodness of fit criteria based on stochastic processes. Ann. Math. Statist. 23 (1952), 193-212. DOI 10.1214/aoms/1177729437 | MR 0050238 | Zbl 0048.11301
[3] Buonaccorsi, J. P.: Measurement Error Models, Methods and Applications. Chapman and Hall/CRC, Boca Raton 2010. DOI 10.1201/9781420066586 | MR 2682774 | Zbl 1277.62014
[4] Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M.: Measurement Error in Nonlinear Models: A Modern Perspective. Chapman and Hall/CRC, Boca Raton 2006. DOI 10.1201/9781420010138 | MR 2243417 | Zbl 1119.62063
[5] Cheng, C. L., Ness, J. W. van: Statistical Regression with Measurement Error. DOI 10.1002/1097-0258(20000815)19:15<2077::aid-sim500>;2-7
[6] Drion, E. F.: Estimation of the parameters of a straight line and of the variances of the variables, if they are both subject to error. Indagationes Math. 13 (1951), 256-260. DOI 10.1016/s1385-7258(51)50036-7 | MR 0042665 | Zbl 0042.38602
[7] Feng, L., Zou, C., Wang, Z.: Rank-based inference for the single-index model. Statist. Probab. Lett. 82 (2012), 535-541. DOI 10.1016/j.spl.2011.11.025 | MR 2887469 | Zbl 1237.62041
[8] Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Statist. Assoc. 32 (1937), 675-701. DOI 10.1080/01621459.1937.10503522
[9] Fuller, W. A.: Measurement Error Models. John Wiley and Sons, New York 1987. DOI 10.1002/jae.3950030407 | MR 0898653 | Zbl 1105.62071
[10] Golub, G. H., Loan, C. F. van: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17 (1980), 883-893. DOI 10.1137/0717073 | MR 0595451
[11] Hájek, J., Šidák, Z., Sen, P. K.: Theory of Rank Tests. Second Edition. Academic Press, New York 1999. DOI 10.1016/b978-012642350-1/50020-5 | MR 1680991
[12] Hotteling, H., Pabst, M. R.: Rank correlation and tests of significance involving no assumptions of normality. Ann. Math. Statist. 7 (1936), 29-43. DOI 10.1214/aoms/1177732543
[13] Jurečková, J., Koul, H. L., Navrátil, R., Picek, J.: Behavior of R-estimators under measurement errors. To apper in Bernoulli.
[14] Jurečková, J., Picek, J., Saleh, A. K. Md. E.: Rank tests and regression rank score tests in measurement error models. Comput. Statist. Data Anal. 54 (2010), 3108-3120. DOI 10.1016/j.csda.2009.08.020 | MR 2727738 | Zbl 1284.62420
[15] Jurečková, J., Sen, P. K., Picek, J.: Metodological Tools in Robust and Nonparametric Statistics. Chapman and Hall/CRC Press, Boca Raton, London 2013. MR 2963549
[16] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models. Springer, New York 2002. DOI 10.1007/978-1-4613-0055-7 | MR 1911855 | Zbl 1007.62047
[17] Lindley, D. V.: Regression lines and the linear functional relationship. Suppl. J. Roy. Statist. Soc. 9 (1947), 218-244. DOI 10.2307/2984115 | MR 0023492 | Zbl 0031.17202
[18] Navrátil, R., Saleh, A. K. Md. E.: Rank tests of symmetry and R-estimation of location parameter under measurement errors. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 50 (2011), 95-102. MR 2920711
[19] Pitman, E. J. G.: Lecture Notes on Nonparametric Statistics. Columbia University, New York 1948.
[20] Scott, E. L.: Note on consistent estimates of the linear structural relation between two variables. Anal. Math. Stat. 21 (1950), 284-288. DOI 10.2307/2984115 | MR 0035424 | Zbl 0038.29703
[21] Smirnov, N. V.: Sur la distribution de $\omega^2$ (criterium de m. r. v. mises). C. R. Akad. Sci. Paris 202 (1936), 449-452.
[22] Tolmatz, L.: On the distribution of the square integral of the brownian bridge. The Annals of Probab. 30 (2002), 253-269. DOI 10.1214/aop/1020107767 | MR 1894107 | Zbl 1018.60039
[23] Tolmatz, L.: Addenda: On the distribution of the square integral of the brownian bridge. The Annals of Probab. 31 (2003), 530-532. MR 1959802
[24] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1 (1945), 80-83. DOI 10.2307/3001968
Partner of
EuDML logo