Previous |  Up |  Next

Article

Title: Further study on complete convergence for weighted sums of arrays of rowwise asymptotically almost negatively associated random variables (English)
Author: Huang, Haiwu
Author: Zhang, Hanjun
Author: Zhang, Qingxia
Author: Peng, Jiangyan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 6
Year: 2015
Pages: 960-972
Summary lang: English
.
Category: math
.
Summary: In this paper, the authors further studied the complete convergence for weighted sums of arrays of rowwise asymptotically almost negatively associated (AANA) random variables with non-identical distribution under some mild moment conditions. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of AANA random variables is obtained. The results not only generalize the corresponding ones of Wang et al. [19], but also partially improve the corresponding ones of Huang et al. [8]. (English)
Keyword: arrays of rowwise AANA random variables
Keyword: complete convergence
Keyword: Marcinkiewicz–Zygmund type strong law of large numbers
Keyword: weighted sums
MSC: 60F15
idZBL: Zbl 06537790
idMR: MR3453680
DOI: 10.14736/kyb-2015-6-0960
.
Date available: 2016-01-21T18:19:31Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144819
.
Reference: [1] Adler, A., Rosalsky, A.: Some general strong laws for weighted sums of stochastically dominated random variables..Stochastic Anal. Appl. 5 (1987), 1-16. Zbl 0617.60028, MR 0882694, 10.1080/07362998708809104
Reference: [2] Adler, A., Rosalsky, A., Taylor, R. L.: Strong laws of large numbers for weighted sums of random variables in normed linear spaces..Int. J. Math. Math. Sci. 12 (1989), 507-530. MR 1007204, 10.1155/s0161171289000657
Reference: [3] Bai, Z. D., Cheng, P. E.: Marcinkiewicz strong laws for linear statistics..Stat. Probab. Lett., 46(2) (2000), 105-112. Zbl 0960.60026, MR 1748864, 10.1016/s0167-7152(99)00093-0
Reference: [4] Cai, G. H.: Strong laws for weighted sums of NA random variables..Metrika 68 (2008), 323-331. Zbl 1247.60036, MR 2448963, 10.1007/s00184-007-0160-5
Reference: [5] Chandra, T. K., Ghosal, S.: Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables..Acta Math. Hung. 71 (1996), 4, 327-336. Zbl 0853.60032, MR 1397560, 10.1007/bf00114421
Reference: [6] Chandra, T. K., Ghosal, S.: The strong law of large numbers for weighted averages under dependence assumptions..J. Theor. Probab. 9 (1996), 3, 797-809. Zbl 0857.60021, MR 1400599, 10.1007/bf02214087
Reference: [7] Hu, X. P., Fang, G. H., Zhu, D. J.: Strong convergence properties for asymptotically almost negatively associated sequence..Discrete Dyn. Nat. Soc. 2012 (2012), 1-8. Zbl 1257.62066, MR 2993321, 10.1155/2012/562838
Reference: [8] Huang, H. W., Deng, G. M., Zhang, Q. X., Jiang, Y. Y.: On the strong convergence for weighted sums of asymptotically almost negatively associated random variables..Kybernetika 50 (2014), 3, 393-407. Zbl 1301.60030, MR 3245537, 10.14736/kyb-2014-3-0393
Reference: [9] Huang, H. W., Wang, D. C.: A note on the strong limit theorem for weighted sums of sequences of negatively dependent random variables..J. Inequal. Appl. 2012 (2012), 1, 233. Zbl 1280.60022, MR 3017300, 10.1186/1029-242x-2012-233
Reference: [10] Jing, B. Y., Liang, H. Y.: Strong limit theorems for weighted sums of negatively associated random variables..J. Theor. Probab. 21 (2008), 4, 890-909. Zbl 1162.60008, MR 2443640, 10.1007/s10959-007-0128-4
Reference: [11] Joag-Dev, K., Proschan, F.: Negative association of random variables, with applications..Ann. Statist. 11 (1983), 1, 286-295. Zbl 0508.62041, MR 0684886, 10.1214/aos/1176346079
Reference: [12] Ko, M. H., Kim, T. S., Lin, Z. Y.: The Hàjeck-Rènyi inequality for the AANA random variables and its applications..Taiwan. J. Math. 9 (2005), 1, 111-122. MR 2122907, 10.11650/twjm/1500407749
Reference: [13] Shen, A. T., Wu, R. C.: Strong convergence results for weighted sums of $\tilde{\rho }$-mixing random variables..J. Inequal. Appl. 2013 (2013), 1, 327. Zbl 1287.60040, MR 3081708, 10.1186/1029-242x-2013-327
Reference: [14] Shen, A. T., Wu, R. C.: Strong and weak convergence for asymptotically almost negatively associated random variables..Discrete Dyn. Nat. Soc. 2013 (2013), 1-7. Zbl 1269.60036, MR 3037709, 10.1155/2013/235012
Reference: [15] Shen, A. T., Wu, R. C.: Strong convergence for sequences of asymptotically almost negatively associated random variables..Stochastics 86 (2014), 2, 291-303. Zbl 1312.60024, MR 3180038, 10.1080/17442508.2013.775289
Reference: [16] Sung, S. H.: On the strong convergence for weighted sums of random variables..Stat. Pap. 52 (2011), 447-454. Zbl 1247.60041, MR 2795891, 10.1007/s00362-009-0241-9
Reference: [17] Sung, S. H.: On the strong convergence for weighted sums of ${{\rho }^{*}}$-mixing random variables..Stat. Pap. 54 (2013), 773-781. MR 3072900, 10.1007/s00362-012-0461-2
Reference: [18] Tang, X. F.: Some strong laws of large numbers for weighted sums of asymptotically almost negatively associated random variables..J. Inequal. Appl. 2013 (2013), 1, 4. Zbl 1283.60052, MR 3017340, 10.1186/1029-242x-2013-4
Reference: [19] Wang, X. J., Hu, S. H., Yang, W. Z.: Complete convergence for arrays of rowwise asymptotically almost negatively associated random variables..Discrete Dyn. Nat. Soc. 2011 (2011), 1-11. Zbl 1235.60026, MR 2846463, 10.1155/2011/717126
Reference: [20] Wang, X. J., Hu, S. H., Yang, W. Z., Wang, X. H.: On complete convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables..Abstr. Appl. Anal. 2012 (2012), 1-15. Zbl 1253.60044, MR 2947673, 10.1155/2012/315138
Reference: [21] Wang, X. J., Li, X. Q., Yang, W. Z., Hu, S. H.: complete convergence for arrays of rowwise weakly dependent random variables..Appl. Math. Lett. 25 (2012), 11, 1916-1920. Zbl 1251.60025, MR 2957779, 10.1016/j.aml.2012.02.069
Reference: [22] Wang, X. H., Shen, A. T., Li, X. Q.: A note on complete convergence of weighted sums for array of rowwise AANA random variables..J. Inequal. Appl. 2013 (2013), 1, 359. Zbl 1295.60038, MR 3101914, 10.1186/1029-242x-2013-359
Reference: [23] Wang, Y. B., Yan, J. G., Cheng, F. Y., Su, C.: The strong law of large numbers and the law of the iterated logarithm for product sums of NA and AANA random variables..Southeast Asian Bull. Math. 27 (2003), 2, 369-384. Zbl 1061.60031, MR 2046474
Reference: [24] Yang, W. Z., Wang, X. J., Ling, N. X., Hu, S. H.: On complete convergence of moving average process for AANA sequence..Discrete Dyn. Nat. Soc. 2012 (2012), 1-24. Zbl 1247.60043, MR 2923400, 10.1155/2012/863931
Reference: [25] Yuan, D. M., An, J.: Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications..Sci. China. Ser. A 52 (2009), 9, 1887-1904. Zbl 1184.62099, MR 2544995, 10.1007/s11425-009-0154-z
Reference: [26] Yuan, D. M., An, J.: Laws of large numbers for Cesàro alpha-integrable random variables under dependence condition AANA or AQSI..Acta Math. Sinica., English Ser. 28 (2012), 6, 1103-1118. Zbl 1252.60031, MR 2916326, 10.1007/s10114-012-0033-3
Reference: [27] Zhou, X. C., Tan, C. C., Lin, J. G.: On the strong laws for weighted sums of ${{\rho }^{*}}$-mixing random variables..J. Inequal. Appl. 2011 (2011), 1, 157816. Zbl 1216.60026, MR 2775040, 10.1155/2011/157816
.

Files

Files Size Format View
Kybernetika_51-2015-6_4.pdf 319.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo