Previous |  Up |  Next

Article

Keywords:
change point; exponential smoothing; quantiles; robust methods; sign test
Summary:
Robust methods similar to exponential smoothing are suggested in this paper. First previous results for exponential smoothing in $L_1$ are generalized using the regression quantiles, including a generalization to more parameters. Then a method based on the classical sign test is introduced that should deal not only with outliers but also with level shifts, including a detection of change points. Properties of various approaches are investigated by means of a simulation study. A real data example is used as an illustration.
References:
[1] Brown, R. G.: Smoothing, Forecasting and Prediction of Descrete Time Series. Prentice-Hall, Englewood Cliffs, NJ 1962.
[2] Cipra, T.: Robust exponential smoothing. J. Forecasting 11 (1992), 1, 57-69. DOI 10.1002/for.3980110106
[3] Cipra, T., Romera, R.: Recursive time series methods in $L_1$-norm. In: $L_1$-Statistical Analysis and Related Methods (Y. Dodge ed.), pp. 233-243, 1992. DOI 10.2307/2289888 | MR 1214835
[4] Gelper, S., Fried, R., Croux, Ch.: Robust forecasting with exponential and Holt-Winters smoothing. J. Forecasting 29 (2010), 3, 285-300. DOI 10.2139/ssrn.1089403 | MR 2752114 | Zbl 1203.62164
[5] Hanzák, T., Cipra, T.: Exponential smoothing for time series with outliers. Kybernetika 47 (2011), 2, 165-178. MR 2828571 | Zbl 1220.62114
[6] Holt, Ch. C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecasting 20 (2004), 5-10. DOI 10.1016/j.ijforecast.2003.09.015
[7] Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D.: Forecasting with Exponential Smoothing. Springer, Berlin - Heidelberg 2008. DOI 10.1007/978-3-540-71918-2 | Zbl 1211.62165
[8] Jurečková, J., Picek, J.: Robust Statistical Methods with R. Chapman and Hall/CRC, 2005. DOI 10.1201/9781420035131 | Zbl 1097.62020
[9] Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46 (1978), 1, 33-50. DOI 10.2307/1913643 | MR 0474644 | Zbl 0482.62023
[10] Koubková, A.: Forecasting seasonals and trends by exponentially weighted moving averages. In: COMPSTAT 2004 Proceedings (J. Antoch, ed.), Springer Verlag 2004, pp. 1345-1352. DOI 10.1007/978-3-7908-2656-2
[11] Maronna, R. A., Martin, D. R., Yohai, V. J.: Robust Statistics: Theory and Methods. John Wiley and Sons Ltd, Chichester 2006. DOI 10.1002/0470010940 | MR 2238141 | Zbl 1094.62040
[12] Moore, G. H., Wallis, W. A.: Time series significance tests based on signs of differences. J. Amer. Statist. Assoc. 38 (1943), 222, 153-164. DOI 10.1080/01621459.1943.10501791 | MR 0008323 | Zbl 0063.04084
[13] Papageorgiou, M., Kotsialos, A., Poulimenos, A.: Long-term sales forecasting using holt-winters and neural network methods. J. Forecasting 25 (2005), 5, 353-368. DOI 10.1002/for.943 | MR 2190371
[14] Romera, R., Cipra, T.: On practical implementation of robust Kalman filtering. Commun. Statist. - Simulation and Computation 24 (1995), 2, 461-488. DOI 10.1080/03610919508813252 | MR 1333047 | Zbl 0850.62688
[15] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1 (1945), 6, 80-83. DOI 10.2307/3001968
[16] Wolfowitz, J.: Asymptotic distribution of runs up and down. Ann. Math. Statist. 15 (1944), 2, 163-172. DOI 10.1214/aoms/1177731281 | MR 0010362 | Zbl 0063.08310
Partner of
EuDML logo