Previous |  Up |  Next

Article

Title: Necessary and sufficient conditions for stability of Volterra integro-dynamic equation on time scales (English)
Author: Raffoul, Youssef N.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 1
Year: 2016
Pages: 21-33
Summary lang: English
.
Category: math
.
Summary: In this research we establish necessary and sufficient conditions for the stability of the zero solution of scalar Volterra integro-dynamic equation on general time scales. Our approach is based on the construction of suitable Lyapunov functionals. We will compare our findings with known results and provides application to quantum calculus. (English)
Keyword: necessary
Keyword: sufficient
Keyword: time scales
Keyword: Lyapunov functionals
Keyword: stability
Keyword: zero solution
MSC: 34D05
MSC: 34N05
MSC: 39A12
MSC: 45D05
idZBL: Zbl 06562206
idMR: MR3475110
DOI: 10.5817/AM2016-1-21
.
Date available: 2016-02-29T18:30:35Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144837
.
Reference: [1] Adivar, M.: Function bounds for solutions of Volterra integrodynamic equations on time scales.EJQTDE (7) (2010), 1–22. MR 2577160
Reference: [2] Adivar, M., Raffoul, Y.: Existence results for periodic solutions of integro-dynamic equations on time scales.Ann. Mat. Pura Appl. (4) 188 (4) (2009), 543–559. DOI: http://dx.doi.org/10.1007/s1023-008-0088-z Zbl 1176.45008, MR 2533954, 10.1007/s10231-008-0088-z
Reference: [3] Adivar, M., Raffoul, Y.: Stability and periodicity in dynamic delay equations.Comput. Math. Appl. 58 (2009), 264–272. Zbl 1189.34143, MR 2535793, 10.1016/j.camwa.2009.03.065
Reference: [4] Adivar, M., Raffoul, Y.: A note on “Stability and periodicity in dynamic delay equations”.Comput. Math. Appl. 59 (2010), 3351–3354. Zbl 1198.34150, MR 2651874, 10.1016/j.camwa.2010.03.025
Reference: [5] Adivar, M., Raffoul, Y.: Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation.An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat 21 (3) (2013), 17–32. Zbl 1313.45008, MR 3145088
Reference: [6] Akın–Bohner, E., Raffoul, Y.: Boundeness in functional dynamic equations on time scales.Adv. Difference Equ. (2006), 1–18. MR 2255160
Reference: [7] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications.Birkhäuser, Boston, 2001. Zbl 0978.39001, MR 1843232
Reference: [8] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales.Birkhäuser, Boston, 2003. Zbl 1025.34001, MR 1962542
Reference: [9] Bohner, M., Raffoul, Y.: Volterra Dynamic Equations on Time Scales.preprint.
Reference: [10] Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations.Dover, New York, 2005. Zbl 1209.34001, MR 2761514
Reference: [11] Burton, T.A.: Stability by Fixed Point Theory for Functional Differential Equations.Dover, New York, 2006. Zbl 1160.34001, MR 2281958
Reference: [12] Eloe, P., Islam, M., Zhang, B.: Uniform asymptotic stability in linear Volterra integrodifferential equations with applications to delay systems.Dynam. Systems Appl. 9 (2000), 331–344. MR 1844634
Reference: [13] Grace, S., Graef, J., Zafer, A.: Oscillation of integro-dynamic equations on time scales.Appl. Math. Lett. 26 (4) (2013), 383–386. Zbl 1261.45005, MR 3019962, 10.1016/j.aml.2012.10.001
Reference: [14] Kulik, T., Tisdell, C.: Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains.Int. J. Difference Equ. 3 (1) (2008), 103–133. MR 2548121
Reference: [15] Lupulescu, V., Ntouyas, S., Younus, A.: Qualitative aspects of a Volterra integro-dynamic system on time scales.EJQTDE (5) (2013), 1–35. MR 3011509
Reference: [16] Peterson, A., Raffoul, Y.: Exponential stability of dynamic equations on time scales.Adv. Difference Equ. 2 (2005), 133–144. Zbl 1100.39013, MR 2197128
Reference: [17] Peterson, A., Tisdell, C.C.: Boundedness and uniqueness of solutions to dynamic equations on time scales.J. Differ. Equations Appl. 10 (13–15) (2004), 1295–1306. Zbl 1072.39017, MR 2100729, 10.1080/10236190410001652793
Reference: [18] Raffoul, Y.: Boundedness in nonlinear differential equations.Nonlinear Studies 10 (2003), 343–350. Zbl 1050.34046, MR 2021322
Reference: [19] Raffoul, Y.: Boundedness in nonlinear functional differential equations with applications to Volterra integrodifferential.J. Integral Equations Appl. 16 (4) (2004). Zbl 1090.34056, MR 2133906, 10.1216/jiea/1181075297
.

Files

Files Size Format View
ArchMathRetro_052-2016-1_3.pdf 514.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo