Previous |  Up |  Next

Article

Title: Asymptotic integration of differential equations with singular $p$-Laplacian (English)
Author: Medveď, Milan
Author: Pekárková, Eva
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 1
Year: 2016
Pages: 13-19
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with $p-$Laplacian, where $1 < p < 2$. We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as $t \rightarrow \infty $. (English)
Keyword: $p$-Laplacian
Keyword: differential equation
Keyword: asymptotic integration
MSC: 34D05
MSC: 35B40
idZBL: Zbl 06562205
idMR: MR3475109
DOI: 10.5817/AM2016-1-13
.
Date available: 2016-02-29T18:28:47Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144836
.
Reference: [1] Agarwal, R.P., Djebali, S., Moussaoui, T., Mustafa, O.G.: On the asymptotic integration of nonlinear differential equations.J. Comput. Appl. Math 202 (2007), 352–376. Zbl 1123.34038, MR 2319962, 10.1016/j.cam.2005.11.038
Reference: [2] Bartušek, M., Medveď, M.: Existence of global solutions for systems of second-order functional-differential equations with $p$-Laplacian.EJDE 40 (2008), 1–8. Zbl 1171.34335, MR 2392944
Reference: [3] Bartušek, M., Pekárková, E.: On the existence of proper solutions of quasilinear second order differential equations.EJQTDE 1 (2007), 1–14. MR 2295683
Reference: [4] Bihari, I.: A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations.Acta Math. Hungar. 7 (1956), 81–94. MR 0079154, 10.1007/BF02022967
Reference: [5] Caligo, D.: Comportamento asintotico degli integrali dell’equazione $y^{\prime \prime }(x)+A(x)y(x)=0,$ nell’ipotesi $\lim _{x\rightarrow +\infty }A(x)=0$.Boll. Un. Mat. Ital. (2) 3 (1941), 286–295. MR 0005219
Reference: [6] Cohen, D.S.: The asymptotic behavior of a class of nonlinear differntial equations.Proc. Amer. Math. Soc. 18 (1967), 607–609. MR 0212289, 10.1090/S0002-9939-1967-0212289-3
Reference: [7] Constantin, A.: On the asymptotic behavior of second order nonlinear differential equations.Rend. Mat. Appl. (7) 13 (4) (1993), 627–634. MR 1283990
Reference: [8] Constantin, A.: Solutions globales d’équations différentielles perturbées.C. R. Acad. Sci. Paris Sér. I Math. 320 (11) (1995), 1319–1322. MR 1338279
Reference: [9] Constantin, A.: On the existence of positive solutions of second order differential equations.Ann. Mat. Pura Appl. (4) 184 (2) (2005), 131–138. Zbl 1223.34041, MR 2149089, 10.1007/s10231-004-0100-1
Reference: [10] Dannan, F.M.: Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations.J. Math. anal. Appl. 108 (1) (1985), 151–164. MR 0791139, 10.1016/0022-247X(85)90014-9
Reference: [11] Kusano, T., Trench, W.F.: Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations.J. London Math. Soc.(2) 31 (3) (1985), 478–486. MR 0812777, 10.1112/jlms/s2-31.3.478
Reference: [12] Kusano, T., Trench, W.F.: Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations.Ann. Mat. Pura Appl. (4) 142 (1985), 381–392. MR 0839046
Reference: [13] Lipovan, O.: On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations.Glasgow Math. J. 45 (1) (2003), 179–187. Zbl 1037.34041, MR 1973349, 10.1017/S0017089502001143
Reference: [14] Medveď, M., Moussaoui, T.: Asymptotic integration of nonlinear $\Phi -$Laplacian differential equations.Nonlinear Anal. 72 (2010), 1–8. Zbl 1192.34059, MR 2577598, 10.1016/j.na.2009.09.042
Reference: [15] Medveď, M., Pekárková, E.: Existence of global solutions for systems of second-order differential equations with $p$-Laplacian.EJDE 2007 (136) (2007), 1–9. Zbl 1138.34316, MR 2349964
Reference: [16] Medveď, M., Pekárková, E.: Long time behavior of second order differential equations with $p$-Laplacian.EJDE 2008 (108) (2008), 1–12. MR 2430905
Reference: [17] Mustafa, O.G., Rogovchenko, Y.V.: Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations.Nonlinear Anal. 51 (2002), 339–368. Zbl 1017.34005, MR 1918348, 10.1016/S0362-546X(01)00834-3
Reference: [18] Mustafa, O.G., Rogovchenko, Y.V.: Asymptotic behavior of nonoscillatory solutions of second-order nonlinear differential equations.Dynamic Systems and Applications 4 (2004), 312–319. Zbl 1082.34042, MR 2117799
Reference: [19] Pekárková, E.: Estimations of noncontinuable solutions of second order differential equations with $p$-Laplacian.Arch. Math.( Brno) 46 (2010), 135–144. Zbl 1240.34187, MR 2684255
Reference: [20] Philos, Ch.G., Purnaras, I.K., Tsamatos, P.Ch.: Large time asymptotic to polynomials solutions for nonlinear differential equations.Nonlinear Anal. 59 (2004), 1157–1179. MR 2098511, 10.1016/S0362-546X(04)00323-2
Reference: [21] Rogovchenko, S.P., Rogovchenko, Y.V.: Asymptotics of solutions for a class of second order nonlinear differential equations.Portugal. Math. 57 (1) (2000), 17–32.
Reference: [22] Rogovchenko, Y.V.: On asymptotic behavior of solutions for a class of second order nonlinear differential equations.Collect. Math. 49 (1) (1998), 113–120. MR 1629766
Reference: [23] Tong, J.: The asymptotic behavior of a class of nonlinear differential equations of second order.Proc. Amer. Math. Soc. 54 (1982), 235–236. Zbl 0491.34036, MR 0637175, 10.1090/S0002-9939-1982-0637175-4
Reference: [24] Trench, W.F.: On the asymptotic behavior of solutions of second order linear differential equations.Proc. Amer. Math. Soc. 54 (1963), 12–14. MR 0142844, 10.1090/S0002-9939-1963-0142844-7
.

Files

Files Size Format View
ArchMathRetro_052-2016-1_2.pdf 497.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo