[1] Babacan, S. D., Luessi, M., Molina, R., Katsaggelos, A. K.: 
Sparse Bayesian methods for low-rank matrix estimation. IEEE Trans. Signal Process. 60 (2012), 3964-3977. 
DOI 10.1109/TSP.2012.2197748 | 
MR 2960472[2] Bishop, C. M.: 
Pattern Recognition and Machine Learning. Information Science and Statistics Springer, New York (2006). 
MR 2247587 | 
Zbl 1107.68072[3] Boykov, Y., Veksler, O., Zabih, R.: 
Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23 (2010), 1222-1239. 
DOI 10.1109/34.969114[9] Ding, C., Zhou, D., He, X., Zha, H.: $R_1$-PCA: rotational invariant $L_1$-norm principal component analysis for robust subspace factorization. Proc. 23rd Int. Conf. on Machine Learning. Pittsburgh ACM, New York (2006), 281-288.
[10] Hansen, P. C.: 
Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion. SIAM Monographs on Mathematical Modeling and Computation 4 Society for Industrial and Applied Mathematics, Philadelphia (1998). 
MR 1486577[11] Jolliffe, I. T.: 
Principal Component Analysis. Springer Series in Statistics Springer, New York (2002). 
MR 2036084 | 
Zbl 1011.62064[12] Kolmogorov, V., Zabin, R.: 
What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004), 147-159. 
DOI 10.1109/TPAMI.2004.1262177[13] Kwak, N.: 
Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008), 1672-1680. 
DOI 10.1109/TPAMI.2008.114[14] Li, S. Z.: 
Markov Random Field Modeling in Image Analysis. Advances in Pattern Recognition Springer, London (2009). 
MR 2493908 | 
Zbl 1183.68691[15] Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. ArXiv preprint arXiv:1009.5055, 2010.
[16] Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Computational Advances in Multi-Sensor Adaptive Processing Aruba, Dutch Antilles, Proceedings. IEEE (2009).
[17] Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. Proc. 27th Int. Conf. on Machine Learning, Haifa Proceedings Omni Press. (2010), 663-670.
[18] Mazumder, R., Hastie, T., Tibshirani, R.: 
Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11 (2010), 2287-2322. 
MR 2719857 | 
Zbl 1242.68237[19] Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: 
RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012), 2233-2246. 
DOI 10.1109/TPAMI.2011.282[21] Wang, N., Yeung, D. Y.: Bayesian robust matrix factorization for image and video processing. Computer Vision, 2013 IEEE International Conference, Sydney Proceedings. IEEE (2013), 1785-1792.
[22] Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in Neural Information Processing Systems 22, Vancouver Proceedings. Curran Associates (2009), 2080-2088.
[24] Zhao, Q., Meng, D., Xu, Z., Zuo, W., Zhang, L.: Robust principal component analysis with complex noise. Proc. 31st Int. Conf. on Machine Learning, Beijing Proceedings. J. Mach. Learn Res. (2014), 55-63.
[25] Zhou, Z., Li, X., Wright, J., Candès, E. J., Ma, Y.: Stable principal component pursuit. 2010 IEEE International Symposium on Information Theory Proceedings, Austin Proceedings. IEEE (2010), 1518-1522.
[26] Zhou, X., Yang, C., Yu, W.: 
Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 597-610. 
DOI 10.1109/TPAMI.2012.132