Title:
|
A novel robust principal component analysis method for image and video processing (English) |
Author:
|
Huan, Guoqiang |
Author:
|
Li, Ying |
Author:
|
Song, Zhanjie |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
197-214 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The research on the robust principal component analysis has been attracting much attention recently. Generally, the model assumes sparse noise and characterizes the error term by the $\ell _1$-norm. However, the sparse noise has clustering effect in practice so using a certain $\ell _p$-norm simply is not appropriate for modeling. In this paper, we propose a novel method based on sparse Bayesian learning principles and Markov random fields. The method is proved to be very effective for low-rank matrix recovery and contiguous outliers detection, by enforcing the low-rank constraint in a matrix factorization formulation and incorporating the contiguity prior as a sparsity constraint. The experiments on both synthetic data and some practical computer vision applications show that the novel method proposed in this paper is competitive when compared with other state-of-the-art methods. (English) |
Keyword:
|
robust principal component analysis |
Keyword:
|
sparse Bayesian learning |
Keyword:
|
Markov random fields |
Keyword:
|
matrix factorization |
Keyword:
|
contiguity prior |
MSC:
|
60J20 |
MSC:
|
62H25 |
MSC:
|
68Q87 |
idZBL:
|
Zbl 06562153 |
idMR:
|
MR3470773 |
DOI:
|
10.1007/s10492-016-0128-8 |
. |
Date available:
|
2016-03-17T19:34:58Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144844 |
. |
Reference:
|
[1] Babacan, S. D., Luessi, M., Molina, R., Katsaggelos, A. K.: Sparse Bayesian methods for low-rank matrix estimation.IEEE Trans. Signal Process. 60 (2012), 3964-3977. MR 2960472, 10.1109/TSP.2012.2197748 |
Reference:
|
[2] Bishop, C. M.: Pattern Recognition and Machine Learning.Information Science and Statistics Springer, New York (2006). Zbl 1107.68072, MR 2247587 |
Reference:
|
[3] Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.IEEE Trans. Pattern Anal. Mach. Intell. 23 (2010), 1222-1239. 10.1109/34.969114 |
Reference:
|
[4] Candès, E. J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J.ACM 58 (2011), Article No. 11, 37 pages. MR 2811000, 10.1145/1970392.1970395 |
Reference:
|
[5] Candès, E. J., Recht, B.: Exact matrix completion via convex optimization.Found. Comput. Math. 9 (2009), 717-772. Zbl 1219.90124, MR 2565240, 10.1007/s10208-009-9045-5 |
Reference:
|
[6] Candès, E. J., Tao, T.: The power of convex relaxation: near-optimal matrix completion.IEEE Trans. Inf. Theory 56 (2010), 2053-2080. Zbl 1366.15021, MR 2723472, 10.1109/TIT.2010.2044061 |
Reference:
|
[7] Torre, F. De la, Black, M. J.: A framework for robust subspace learning.Int. J. Comput. Vis. 54 (2003), 117-142. Zbl 1076.68058, 10.1023/A:1023709501986 |
Reference:
|
[8] Ding, X., He, L., Carin, L.: Bayesian robust principal component analysis.IEEE Trans. Image Process. 20 (2011), 3419-3430. MR 2867882, 10.1109/TIP.2011.2156801 |
Reference:
|
[9] Ding, C., Zhou, D., He, X., Zha, H.: $R_1$-PCA: rotational invariant $L_1$-norm principal component analysis for robust subspace factorization.Proc. 23rd Int. Conf. on Machine Learning. Pittsburgh ACM, New York (2006), 281-288. |
Reference:
|
[10] Hansen, P. C.: Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion.SIAM Monographs on Mathematical Modeling and Computation 4 Society for Industrial and Applied Mathematics, Philadelphia (1998). MR 1486577 |
Reference:
|
[11] Jolliffe, I. T.: Principal Component Analysis.Springer Series in Statistics Springer, New York (2002). Zbl 1011.62064, MR 2036084 |
Reference:
|
[12] Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans.Pattern Anal. Mach. Intell. 26 (2004), 147-159. 10.1109/TPAMI.2004.1262177 |
Reference:
|
[13] Kwak, N.: Principal component analysis based on L1-norm maximization.IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008), 1672-1680. 10.1109/TPAMI.2008.114 |
Reference:
|
[14] Li, S. Z.: Markov Random Field Modeling in Image Analysis.Advances in Pattern Recognition Springer, London (2009). Zbl 1183.68691, MR 2493908 |
Reference:
|
[15] Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices.ArXiv preprint arXiv:1009.5055, 2010. |
Reference:
|
[16] Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix.Computational Advances in Multi-Sensor Adaptive Processing Aruba, Dutch Antilles, Proceedings. IEEE (2009). |
Reference:
|
[17] Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation.Proc. 27th Int. Conf. on Machine Learning, Haifa Proceedings Omni Press. (2010), 663-670. |
Reference:
|
[18] Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices.J. Mach. Learn. Res. 11 (2010), 2287-2322. Zbl 1242.68237, MR 2719857 |
Reference:
|
[19] Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images.IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012), 2233-2246. 10.1109/TPAMI.2011.282 |
Reference:
|
[20] Recht, B., Fazel, M., Parrilo, P. A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization.SIAM Rev. 52 (2010), 471-501. Zbl 1198.90321, MR 2680543, 10.1137/070697835 |
Reference:
|
[21] Wang, N., Yeung, D. Y.: Bayesian robust matrix factorization for image and video processing.Computer Vision, 2013 IEEE International Conference, Sydney Proceedings. IEEE (2013), 1785-1792. |
Reference:
|
[22] Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization.Advances in Neural Information Processing Systems 22, Vancouver Proceedings. Curran Associates (2009), 2080-2088. |
Reference:
|
[23] Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit.IEEE Trans. Inform. Theory 58 (2012), 3047-3064. Zbl 1365.62228, MR 2952532, 10.1109/TIT.2011.2173156 |
Reference:
|
[24] Zhao, Q., Meng, D., Xu, Z., Zuo, W., Zhang, L.: Robust principal component analysis with complex noise.Proc. 31st Int. Conf. on Machine Learning, Beijing Proceedings. J. Mach. Learn Res. (2014), 55-63. |
Reference:
|
[25] Zhou, Z., Li, X., Wright, J., Candès, E. J., Ma, Y.: Stable principal component pursuit.2010 IEEE International Symposium on Information Theory Proceedings, Austin Proceedings. IEEE (2010), 1518-1522. |
Reference:
|
[26] Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation.IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 597-610. 10.1109/TPAMI.2012.132 |
. |