Previous |  Up |  Next

Article

Title: Boundary augmented Lagrangian method for the Signorini problem (English)
Author: Zhang, Shougui
Author: Li, Xiaolin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 2
Year: 2016
Pages: 215-231
Summary lang: English
.
Category: math
.
Summary: An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both theoretical results and numerical experiments show that the method presented is efficient. (English)
Keyword: Signorini problem
Keyword: augmented Lagrangian
Keyword: fixed point
Keyword: Steklov-Poincaré operator
Keyword: boundary integral equation
MSC: 35J05
MSC: 35J58
MSC: 65N38
idZBL: Zbl 06562154
idMR: MR3470774
DOI: 10.1007/s10492-016-0129-7
.
Date available: 2016-03-17T19:37:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144845
.
Reference: [1] Aitchison, J. M., Elliott, C. M., Ockendon, J. R.: Percolation in gently sloping beaches.IMA J. Appl. Math. 30 (1983), 269-287. Zbl 0536.76085, MR 0719980, 10.1093/imamat/30.3.269
Reference: [2] Aitchison, J. M., Poole, M. W.: A numerical algorithm for the solution of Signorini problems.J. Comput. Appl. Math. 94 (1998), 55-67. Zbl 0937.74071, MR 1638262, 10.1016/S0377-0427(98)00030-2
Reference: [3] Amdouni, S., Hild, P., Lleras, V., Moakher, M., Renard, Y.: A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies.ESAIM, Math. Model. Numer. Anal. 46 (2012), 813-839. Zbl 1271.74354, MR 2891471, 10.1051/m2an/2011072
Reference: [4] Auliac, S., Belhachmi, Z., Belgacem, F. Ben, Hecht, F.: Quadratic finite elements with non-matching grids for the unilateral boundary contact.ESAIM, Math. Model. Numer. Anal. 47 (2013), 1185-1205. MR 3082294, 10.1051/m2an/2012064
Reference: [5] Bustinza, R., Sayas, F.-J.: Error estimates for an LDG method applied to Signorini type problems.J. Sci. Comput. 52 (2012), 322-339. Zbl 1311.74110, MR 2948696, 10.1007/s10915-011-9548-5
Reference: [6] Chouly, F.: An adaptation of Nitsche's method to the Tresca friction problem.J. Math. Anal. Appl. 411 (2014), 329-339. Zbl 1311.74112, MR 3118488, 10.1016/j.jmaa.2013.09.019
Reference: [7] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems.Scientific Computation Springer, Berlin (2008). Zbl 1139.65050, MR 2423313
Reference: [8] Han, H. D.: A direct boundary element method for Signorini problems.Math. Comput. 55 (1990), 115-128. Zbl 0705.65084, MR 1023048, 10.1090/S0025-5718-1990-1023048-7
Reference: [9] He, B. S., Liao, L. Z.: Improvements of some projection methods for monotone nonlinear variational inequalities.J. Optim. Theory Appl. 112 (2002), 111-128. Zbl 1025.65036, MR 1881692, 10.1023/A:1013096613105
Reference: [10] Hsiao, G. C., Wendland, W. L.: Boundary Integral Equations.Applied Mathematical Sciences 164 Springer, Berlin (2008). Zbl 1157.65066, MR 2441884
Reference: [11] Ito, K., Kunisch, K.: Semi-smooth Newton methods for the Signorini problem.Appl. Math., Praha 53 (2008), 455-468. Zbl 1199.49064, MR 2469587, 10.1007/s10492-008-0036-7
Reference: [12] Karageorghis, A.: Numerical solution of a shallow dam problem by a boundary element method.Comput. Methods Appl. Mech. Eng. 61 (1987), 265-276. Zbl 0597.76096, MR 0885576, 10.1016/0045-7825(87)90095-8
Reference: [13] Khoromskij, B. N., Wittum, G.: Numerical Solution of Elliptic Differential Equations by Reduction to the Interface.Lecture Notes in Computational Science and Engineering 36 Springer, Berlin (2004). Zbl 1043.65128, MR 2045003, 10.1007/978-3-642-18777-3
Reference: [14] Li, F., Li, X.: The interpolating boundary element-free method for unilateral problems arising in variational inequalities.Math. Probl. Eng. 2014 (2014), Article ID 518727, 11 pages. MR 3170472
Reference: [15] Maischak, M., Stephan, E. P.: Adaptive $hp$-versions of BEM for Signorini problems.Appl. Numer. Math. 54 (2005), 425-449. Zbl 1114.74062, MR 2149362, 10.1016/j.apnum.2004.09.012
Reference: [16] Mel'nyk, T. A., Nakvasiuk, I. A., Wendland, W. L.: Homogenization of the Signorini boundary-value problem in a thick junction and boundary integral equations for the homogenized problem.Math. Methods Appl. Sci. 34 (2011), 758-775. Zbl 1217.35019, MR 2815766, 10.1002/mma.1395
Reference: [17] Noor, M. A.: Some developments in general variational inequalities.Appl. Math. Comput. 152 (2004), 199-277. Zbl 1134.49304, MR 2050063
Reference: [18] Poullikkas, A., Karageorghis, A., Georgiou, G.: The method of fundamental solutions for Signorini problems.IMA J. Numer. Anal. 18 (1998), 273-285. Zbl 0901.73017, MR 1617293, 10.1093/imanum/18.2.273
Reference: [19] Quarteroni, A., Valli, A.: Theory and application of Steklov-Poincaré operators for boundary-value problems.Applied and Industrial Mathematics, Proc. Symp. Venice, 1989 Mathematics and its Applications 56 Kluwer Acad. Publ., Dordrecht (1991), 179-203. Zbl 0723.65098, MR 1147198
Reference: [20] Spann, W.: On the boundary element method for the Signorini problem of the Laplacian.Numer. Math. 65 (1993), 337-356. Zbl 0798.65106, MR 1227026, 10.1007/BF01385756
Reference: [21] Stadler, G.: Path-following and augmented Lagrangian methods for contact problems in linear elasticity.J. Comput. Appl. Math. 203 (2007), 533-547. Zbl 1119.49028, MR 2323060, 10.1016/j.cam.2006.04.017
Reference: [22] Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements.Springer, New York (2008). Zbl 1153.65302, MR 2361676
Reference: [23] Steinbach, O.: Boundary element methods for variational inequalities.Numer. Math. 126 (2014), 173-197. Zbl 1291.65193, MR 3149076, 10.1007/s00211-013-0554-4
Reference: [24] Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving the Signorini problem.IMA J. Numer. Anal. 31 (2011), 1754-1772. Zbl 1315.74021, MR 2846774, 10.1093/imanum/drr010
Reference: [25] Zhang, S.: A projection iterative algorithm for the Signorini problem using the boundary element method.Eng. Anal. Bound. Elem. 50 (2015), 313-319. MR 3280499, 10.1016/j.enganabound.2014.08.012
Reference: [26] Zhang, S., Zhu, J.: A projection iterative algorithm boundary element method for the Signorini problem.Eng. Anal. Bound. Elem. 37 (2013), 176-181. Zbl 1352.65601, MR 2999664, 10.1016/j.enganabound.2012.08.010
.

Files

Files Size Format View
AplMat_61-2016-2_5.pdf 326.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo