Previous |  Up |  Next


Title: Baire one functions and their sets of discontinuity (English)
Author: Fenecios, Jonald P.
Author: Cabral, Emmanuel A.
Author: Racca, Abraham P.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 1
Year: 2016
Pages: 109-114
Summary lang: English
Category: math
Summary: A characterization of functions in the first Baire class in terms of their sets of discontinuity is given. More precisely, a function $f\colon \mathbb {R}\rightarrow \mathbb {R}$ is of the first Baire class if and only if for each $\epsilon >0$ there is a sequence of closed sets $\{C_n\}_{n=1}^{\infty }$ such that $D_f=\bigcup _{n=1}^{\infty }C_n$ and $\omega _f(C_n)<\epsilon $ for each $n$ where $$ \omega _f(C_n)=\sup \{|f(x)-f(y)|\colon x,y \in C_n\} $$ and $D_f$ denotes the set of points of discontinuity of $f$. The proof of the main theorem is based on a recent $\epsilon $-$\delta $ characterization of Baire class one functions as well as on a well-known theorem due to Lebesgue. Some direct applications of the theorem are discussed in the paper. (English)
Keyword: Baire class one function
Keyword: set of points of discontinuity
Keyword: oscillation of a function
MSC: 26A21
idZBL: Zbl 06562163
idMR: MR3475142
DOI: 10.21136/MB.2016.9
Date available: 2016-03-17T19:50:50Z
Last updated: 2020-07-01
Stable URL:
Reference: [1] Bąkowska, A., Pawlak, R. J.: On some characterizations of Baire class one functions and Baire class one like functions.Tatra Mt. Math. Publ. 46 (2010), 91-106. Zbl 1224.26016, MR 2731426
Reference: [2] Bressoud, D. M.: A Radical Approach to Lebesgue's Theory of Integration.MAA Textbooks Cambridge University Press, Cambridge (2008). Zbl 1165.00001, MR 2380238
Reference: [3] Bruckner, A. M., Bruckner, J. B., Thomson, B. S.: Real Analysis.Prentice-Hall International, Upper Saddle River (1997). Zbl 0872.26001
Reference: [4] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4 American Mathematical Society, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004/09
Reference: [5] Kuratowski, K.: Topology. I.Academic Press, New York; Państwowe Wydawnictwo Naukowe, Warszawa; Mir, Moskva Russian (1966).
Reference: [6] Lee, P.-Y., Tang, W.-K., Zhao, D.: An equivalent definition of functions of the first Baire class.Proc. Am. Math. Soc. 129 (2001), 2273-2275. Zbl 0970.26004, MR 1823909, 10.1090/S0002-9939-00-05826-3
Reference: [7] Natanson, I. P.: Theory of Functions of a Real Variable. II.Frederick Ungar Publishing New York German (1961). MR 0067952
Reference: [8] Zhao, D.: Functions whose composition with Baire class one functions are Baire class one.Soochow J. Math. 33 (2007), 543-551. Zbl 1137.26300, MR 2404581


Files Size Format View
MathBohem_141-2016-1_9.pdf 222.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo