Previous |  Up |  Next

Article

Title: Output synchronization of multi-agent port-Hamiltonian systems with link dynamics (English)
Author: Wang, Bing
Author: Wang, Xinghu
Author: Wang, Honghua
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 1
Year: 2016
Pages: 89-105
Summary lang: English
.
Category: math
.
Summary: In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the proposed approach is applied in multi-machine power systems, which are interconnected in microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates the effectiveness of the gotten method. (English)
Keyword: multi-agent system
Keyword: port-Hamiltonian system
Keyword: Casimir function
Keyword: link dynamics
Keyword: multi-machine power system
MSC: 93C02
MSC: 94C15
idZBL: Zbl 1374.93020
idMR: MR3482613
DOI: 10.14736/kyb-2016-1-0089
.
Date available: 2016-03-21T17:54:09Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144865
.
Reference: [1] Arcak, M.: Passivity as a design tool for group coordination..IEEE Trans. Automat. Control 52 (2007), 1380-1390. MR 2341743, 10.1109/tac.2007.902733
Reference: [2] Cheng, D., Xi, Z., Hong., Y., Qin, H.: Energy-based stabilization of forced Hamiltonian systems and its application to power systems..Control Theory Appl. 17 (2000), 798-802.
Reference: [3] Chopra, N., Spong, M. W.: Passivity-based control of multi-agent systems..In: Advances in Robot Control: from Everyday Physics to Human-Like Movements (S. Kawamura and M. Svinin, eds.), Springer-Verlag, New York 2006, pp. 107-134. Zbl 1134.93308, 10.1007/978-3-540-37347-6_6
Reference: [4] Godsil, C., Royle, G.: Algebraic Graph Theory..Springer-Verlag, New York 2001. Zbl 0968.05002, MR 1829620, 10.1007/978-1-4613-0163-9
Reference: [5] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection..IEEE Trans. Automat. Control 52 (2007), 943-948. MR 2324260, 10.1109/tac.2007.895860
Reference: [6] Hu, J.: On robust consensus of multi-agent systems with communication delays..Kybernetika 45 (2009), 768-784. Zbl 1190.93003, MR 2599111
Reference: [7] Jafarian, M., Vos, E., Persis, C. De, Schaft, A. J. van der, Scherpen, J. M. A.: Formation control of a multi-agent system subject to Coulomb friction..Automatica 61 (2015), 253-262. MR 3401712, 10.1016/j.automatica.2015.08.021
Reference: [8] Li, C., Wang, Y.: Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems..Acta Automat. Sinica 40 (2014), 415-422. 10.1016/s1874-1029(14)60004-5
Reference: [9] Liu, T., Jiang, Z. P.: Distributed output-feedback control of nonlinear multi-agent systems..IEEE Trans. Automat. Control 58 (2013), 2912-2917. MR 3126000, 10.1109/tac.2013.2257616
Reference: [10] Lu, Q., Sun, Y. Z., Xu, Z., Mochizuki, T.: Decentralized nonlinear optimal excitation control..IEEE Trans. Power Systems 11 (1996), 1957-1962. 10.1109/59.544670
Reference: [11] Macchelli, A., Melchiorri, C.: Control by interconnection of mixed port Hamiltonian systems..IEEE Trans. Automat. Control 50 (2005), 1839-1844. MR 2182737, 10.1109/tac.2005.858656
Reference: [12] Maschke, B., Ortega, R., Schaft, A. J. van der: Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation..IEEE Trans. Automat. Control 45 (2000), 1498-1502. MR 1797402, 10.1109/9.871758
Reference: [13] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR 2086916, 10.1109/tac.2004.834113
Reference: [14] Ortega, R., Schaft, A. J. van der, Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems..Automatica 38 (2002), 585-596. MR 2131469, 10.1016/s0005-1098(01)00278-3
Reference: [15] Ren, W.: On consensus algorithms for double-integrator dynamics..IEEE Trans. Automat. Control 53 (2008), 1503-1509. MR 2451239, 10.1109/tac.2008.924961
Reference: [16] Sakai, S.: An impedance control for simplified hydraulic model with Casimir functions..In: Proc. SICE Annual Conference, Taipei 2010.
Reference: [17] Shi, G., Johansson, K. H., Hong, Y.: Reaching an optimal consensus: dynamical systems that compute intersections of convex sets..IEEE Trans. Automat. Control 58 (2013), 610-622. MR 3029459, 10.1109/tac.2012.2215261
Reference: [18] Sun, Y. Z., Li, X., Song, Y. H.: A new Lyapunov function for transient stability analysis of controlled power systems..Power Engrg. Soc. Winter Meeting 2 (2000), 1325-1330.
Reference: [19] Schaft, A. J. van der: $L_{2}$-Gain and Passivity Techniques in Nonlinear Control..Springer-Verlag, London 2000. MR 1844565, 10.1007/978-1-4471-0507-7
Reference: [20] Schaft, A. J. van der, Maschke, B. M.: Port-Hamiltonian systems on graphs..SIAM J. Control Optim. 51 (2013), 906-937. MR 3032900, 10.1137/110840091
Reference: [21] Wang, X., Xu, D., Hong, Y.: Consensus control of nonlinear leader-follower multi-agent systems with actuating disturbances..Systems Control Lett 73 (2014), 58-66. Zbl 1297.93018, MR 3270955, 10.1016/j.sysconle.2014.09.004
Reference: [22] Wang, Y., Cheng, D., Li, C., Ge, Y.: Dissipative Hamiltonian realization and energy-based $L_{2}$-disturbance attenuation control of multimachine power systems..IEEE Trans. Automat- Control 48 (2003), 1428-1433. MR 2004379, 10.1109/tac.2003.815037
Reference: [23] Wang, Y., Ge, S.: Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems..IEEE Trans. Control Systems Technol. 16 (2008), 202-213. 10.1109/tcst.2007.903367
Reference: [24] Xi, Z., Cheng, D., Lu., Q., Mei, S.: Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method..Automatica 38 (2002), 527-534. 10.1016/s0005-1098(01)00233-3
.

Files

Files Size Format View
Kybernetika_52-2016-1_7.pdf 478.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo