Previous |  Up |  Next

Article

Title: Edge-colouring of graphs and hereditary graph properties (English)
Author: Dorfling, Samantha
Author: Vetrík, Tomáš
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 87-99
Summary lang: English
.
Category: math
.
Summary: Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph $G$, a hereditary graph property ${\mathcal P}$ and $l \ge 1$ we define $\chi '_{{\mathcal P},l}(G)$ to be the minimum number of colours needed to properly colour the edges of $G$, such that any subgraph of $G$ induced by edges coloured by (at most) $l$ colours is in ${\mathcal P}$. We present a necessary and sufficient condition for the existence of $\chi '_{{\mathcal P},l}(G)$. We focus on edge-colourings of graphs with respect to the hereditary properties ${\mathcal O}_k$ and ${\mathcal S}_k$, where ${\mathcal O}_k$ contains all graphs whose components have order at most $k+1$, and ${\mathcal S}_k$ contains all graphs of maximum degree at most $k$. We determine the value of $\chi '_{{\mathcal S}_k,l}(G)$ for any graph $G$, $k \ge 1$, $l \ge 1$, and we present a number of results on $\chi '_{{\mathcal O}_k,l}(G)$. (English)
Keyword: edge-colouring
Keyword: proper colouring
Keyword: hereditary graph property
MSC: 05C15
MSC: 05C35
idZBL: Zbl 06587875
idMR: MR3483224
DOI: 10.1007/s10587-016-0241-6
.
Date available: 2016-04-07T14:56:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144874
.
Reference: [1] Basavaraju, M., Chandran, L. S.: A note on acyclic edge coloring of complete bipartite graphs.Discrete Math. 309 (2009), 4646-4648. Zbl 1192.05044, MR 2519206, 10.1016/j.disc.2009.01.014
Reference: [2] Borowiecki, M., Broere, I., Frick, M., Mihók, P., Semanišin, G.: A survey of hereditary properties of graphs.Discuss. Math., Graph Theory 17 (1997), 5-50. MR 1633268, 10.7151/dmgt.1037
Reference: [3] Czap, J., Mihók, P.: Fractional {$\scr Q$}-edge-coloring of graphs.Discuss. Math., Graph Theory 33 (2013), 509-519. MR 3078888, 10.7151/dmgt.1685
Reference: [4] Dorfling, M. J., Dorfling, S.: Generalized edge-chromatic numbers and additive hereditary properties of graphs.Discuss. Math., Graph Theory 22 (2002), 349-359. Zbl 1030.05039, MR 1961213, 10.7151/dmgt.1180
Reference: [5] Erd{ő}s, P., Wilson, R. J.: On the chromatic index of almost all graphs.J. Comb. Theory, Ser. B 23 (1977), 255-257. MR 0463022, 10.1016/0095-8956(77)90039-9
Reference: [6] Fiedorowicz, A., Ha{ł}uszczak, M., Narayanan, N.: About acyclic edge colourings of planar graphs.Inf. Process. Lett. 108 (2008), 412-417. Zbl 1189.05060, MR 2458434, 10.1016/j.ipl.2008.07.016
Reference: [7] Fouquet, J.-L., Jolivet, J.-L.: Strong edge-colorings of graphs and applications to multi-{$k$}-gons.Ars Comb. 16-A (1983), 141-150. MR 0737086
Reference: [8] Ha{ł}uszczak, M., Vateha, P.: On the completeness of decomposable properties of graphs.Discuss. Math., Graph Theory 19 (1999), 229-236. MR 1768303, 10.7151/dmgt.1097
Reference: [9] Hou, J., Wang, W., Zhang, X.: Acyclic edge coloring of planar graphs with girth at least 5.Discrete Appl. Math. 161 (2013), 2958-2967. Zbl 1287.05045, MR 3126663
Reference: [10] K{ö}nig, D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre.Math. Ann. 77 German (1916), 453-465. MR 1511872, 10.1007/BF01456961
Reference: [11] Muthu, R., Narayanan, N., Subramanian, C. R.: On {$k$}-intersection edge colourings.Discuss. Math., Graph Theory 29 (2009), 411-418. Zbl 1194.05042, MR 2574479, 10.7151/dmgt.1456
Reference: [12] Vizing, V. G.: On an estimate of the chromatic class of a {$p$}-graph.Diskret. Analiz No. 3 (1964), 25-30. MR 0180505
Reference: [13] Yang, F., Chen, X.-E., Ma, C.: On the vertex-distinguishing proper edge coloring of composition of complete graph and star.Inf. Process. Lett. 114 (2014), 217-221. Zbl 1296.05081, MR 3146289, 10.1016/j.ipl.2013.11.001
.

Files

Files Size Format View
CzechMathJ_66-2016-1_9.pdf 270.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo