Previous |  Up |  Next

Article

Title: Volume comparison theorems for manifolds with radial curvature bounded (English)
Author: Mao, Jing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 71-86
Summary lang: English
.
Category: math
.
Summary: In this paper, for complete Riemannian manifolds with radial Ricci or sectional curvature bounded from below or above, respectively, with respect to some point, we prove several volume comparison theorems, which can be seen as extensions of already existing results. In fact, under this radial curvature assumption, the model space is the spherically symmetric manifold, which is also called the generalized space form, determined by the bound of the radial curvature, and moreover, volume comparisons are made between annulus or geodesic balls on the original manifold and those on the model space. (English)
Keyword: spherically symmetric manifolds
Keyword: radial Ricci curvature
Keyword: radial sectional curvature
Keyword: volume comparison
MSC: 52A38
MSC: 53C20
MSC: 53C21
idZBL: Zbl 06587874
idMR: MR3483223
DOI: 10.1007/s10587-016-0240-7
.
Date available: 2016-04-07T14:55:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144877
.
Reference: [1] Abresch, U.: Lower curvature bounds, Toponogov's theorem, and bounded topology.Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 651-670. MR 0839689, 10.24033/asens.1499
Reference: [2] Barroso, C. S., Bessa, G. Pacelli: Lower bounds for the first Laplacian eigenvalue of geodesic balls of spherically symmetric manifolds.Int. J. Appl. Math. Stat. 6 (2006), Article No. D06, 82-86. MR 2338140
Reference: [3] Chavel, I.: Eigenvalues in Riemannian Geometry.Pure and Applied Mathematics 115 Academic Press, Orlando (1984). MR 0768584
Reference: [4] Cheeger, J., Yau, S. T.: A lower bound for the heat kernel.Commun. Pure Appl. Math. 34 (1981), 465-480. MR 0615626, 10.1002/cpa.3160340404
Reference: [5] Cheng, S.-Y.: Eigenfunctions and eigenvalues of Laplacian.Differential Geometry Proc. Sympos. Pure Math. 27, Stanford Univ., Stanford, Calif., 1973, Part 2 Amer. Math. Soc., Providence (1975), 185-193 S. S. Chern et al. MR 0378003
Reference: [6] Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications.Math. Z. 143 (1975), 289-297. MR 0378001, 10.1007/BF01214381
Reference: [7] Elerath, D.: An improved Toponogov comparison theorem for nonnegatively curved manifolds.J. Differ. Geom. 15 (1980), 187-216. MR 0614366, 10.4310/jdg/1214435490
Reference: [8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds.Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. Zbl 1302.35275, MR 3268868, 10.1007/s00526-013-0692-7
Reference: [9] Gage, M. E.: Upper bounds for the first eigenvalue of the Laplace-Beltrami operator.Indiana Univ. Math. J. 29 (1980), 897-912. MR 0589652, 10.1512/iumj.1980.29.29061
Reference: [10] Hu, Z., Jin, Y., Xu, S.: A volume comparison estimate with radially symmetric Ricci curvature lower bound and its applications.Int. J. Math. Math. Sci. 2010 (2010), Article ID 758531, 14 pages. Zbl 1196.53024, MR 2629591
Reference: [11] Itokawa, Y., Machigashira, Y., Shiohama, K.: Maximal diameter theorems for manifolds with restricted radial curvature.Proc. of the 5th Pacific Rim Geometry Conf., Tôhoku University, Sendai, Japan, 2000 Tohoku Math. Publ. 20 Tôhoku University, Sendai (2001), 61-68 S. Nishikawa. Zbl 1065.53033, MR 1864887
Reference: [12] Kasue, A.: A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold.Jap. J. Math., New Ser. 8 (1982), 309-341. MR 0722530, 10.4099/math1924.8.309
Reference: [13] Katz, N. N., Kondo, K.: Generalized space forms.Trans. Am. Math. Soc. 354 (2002), 2279-2284. Zbl 0990.53032, MR 1885652, 10.1090/S0002-9947-02-02966-5
Reference: [14] Klingenberg, W.: Contributions to Riemannian geometry in the large.Ann. Math. (2) 69 (1959), 654-666. MR 0105709, 10.2307/1970029
Reference: [15] Mao, J.: Eigenvalue inequalities for the {$p$}-Laplacian on a Riemannian manifold and estimates for the heat kernel.J. Math. Pures Appl. (9) 101 (2014), 372-393. Zbl 1285.58013, MR 3168915, 10.1016/j.matpur.2013.06.006
Reference: [16] Mao, J.: Eigenvalue Estimation and some Results on Finite Topological Type.Ph.D. thesis Mathematics department of Instituto Superior Técnico-Universidade Técnica de Lisboa (2013).
Reference: [17] Petersen, P.: Riemannian Geometry.Graduate Texts in Mathematics 171 Springer, New York (2006). Zbl 1220.53002, MR 2243772
Reference: [18] Shiohama, K.: Comparison theorems for manifolds with radial curvature bounded below.Differential Geometry, Proc. of the First International Symposium, Josai University, Saitama, Japan, 2001, Josai Math. Monogr. 3 Josai University, Graduate School of Science, Saitama (2001), 81-91 Q.-M. Cheng. Zbl 1037.53018, MR 1824602
Reference: [19] Zhu, S.: The comparison geometry of Ricci curvature.Comparison Geometry, Berkeley, 1993-1994 Math. Sci. Res. Inst. Publ. 30 Cambridge University, Cambridge (1997), 221-262 K. Grove et al. MR 1452876
.

Files

Files Size Format View
CzechMathJ_66-2016-1_8.pdf 303.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo