Previous |  Up |  Next

Article

Title: Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows (English)
Author: Sauer, Jonas
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 41-55
Summary lang: English
.
Category: math
.
Summary: We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal $L^p$-regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group $G:=\mathbb R^{n-1}\times \mathbb R / L \mathbb Z$ to obtain an $\mathcal {R}$-bound for the resolvent estimate. Then, Weis' theorem connecting $\mathcal {R}$-boundedness of the resolvent with maximal $L^p$ regularity of a sectorial operator applies. (English)
Keyword: Stokes operator
Keyword: spatially periodic problem
Keyword: maximal $L^p$ regularity
Keyword: nematic liquid crystal flow
Keyword: quasilinear parabolic equations
MSC: 35B10
MSC: 35K59
MSC: 35Q35
MSC: 76A15
MSC: 76D03
idZBL: Zbl 06587871
idMR: MR3483220
DOI: 10.1007/s10587-016-0237-2
.
Date available: 2016-04-07T14:51:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144878
.
Reference: [1] Alfsen, E. M.: A simplified constructive proof of the existence and uniqueness of Haar measure.Math. Scand. 12 (1963), 106-116. MR 0158022, 10.7146/math.scand.a-10675
Reference: [2] Amann, H.: Quasilinear evolution equations and parabolic systems.Trans. Am. Math. Soc. 293 (1986), 191-227. Zbl 0635.47056, MR 0814920, 10.1090/S0002-9947-1986-0814920-4
Reference: [3] Bourgain, J.: Vector-valued singular integrals and the {$H^1$}-BMO duality.Probability Theory and Harmonic Analysis. Papers from the Mini-Conf. on Probability and Harmonic Analysis, Cleveland, 1983 Pure Appl. Math. 98 Marcel Dekker, New York (1986), 1-19 W. A. Woyczy{ń}ski. MR 0830227
Reference: [4] Bruhat, F.: Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes {$\wp $}-adiques.Bull. Soc. Math. Fr. 89 French (1961), 43-75. MR 0140941, 10.24033/bsmf.1559
Reference: [5] Burkholder, D. L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions.Conf. on Harmonic Analysis in Honor of Antoni Zygmund, 1, Chicago, Ill., 1981 The Wadsworth Math. Ser. Wadsworth, Belmont (1983), 270-286 W. Beckner et al. MR 0730072
Reference: [6] Cartan, H.: Sur la mesure de Haar.C. R. Acad. Sci., Paris 211 French (1940), 759-762. MR 0005742
Reference: [7] Clément, P., Li, S.: Abstract parabolic quasilinear equations and application to a groundwater flow problem.Adv. Math. Sci. Appl. 3 (1993/1994), 17-32. MR 1287921
Reference: [8] Denk, R., Hieber, M., Prüss, J.: {$\scr R$}-boundedness, Fourier multipliers and problems of elliptic and parabolic type.Mem. Am. Math. Soc. 166 (2003), 114 pages. MR 2006641
Reference: [9] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). Zbl 0855.47016, MR 1342297
Reference: [10] Ericksen, J. L., Kinderlehrer, D.: Theory and Applications of Liquid Crystals.The IMA Volumes in Mathematics and Its Applications Vol. 5, Papers from the IMA workshop, Minneapolis Institute for Mathematics and Its Applications, University of Minnesota, Springer, New York (1987). MR 0900827
Reference: [11] Farwig, R., Ri, M.-H.: Resolvent estimates and maximal regularity in weighted {$L^q$}-spaces of the Stokes operator in an infinite cylinder.J. Math. Fluid Mech. 10 (2008), 352-387. Zbl 1162.76322, MR 2430805, 10.1007/s00021-006-0235-5
Reference: [12] Haar, A.: Der Massbegriff in der Theorie der kontinuierlichen Gruppen.Ann. Math. (2) 34 German (1933), 147-169. Zbl 0006.10103, MR 1503103, 10.2307/1968346
Reference: [13] Hieber, M., Nesensohn, M., Prü{ß}, J., Schade, K.: Dynamics of nematic liquid crystal flows.The quasilinear approach. (2014), 11 pages ArXiv:1302.4596 [math.AP]. MR 3465380
Reference: [14] Kunstmann, P. C., Weis, L.: Maximal {$L_p$}-regularity for parabolic equations, Fourier multiplier theorems and {$H^\infty$}-functional calculus.Functional Analytic Methods for Evolution Equations. Autumn School on Evolution Equations and Semigroups, Levico Terme, Trento, Italy, 2001 Lecture Notes in Mathematics 1855 Springer, Berlin (2004), 65-311 M. Iannelli, et al. Zbl 1097.47041, MR 2108959, 10.1007/978-3-540-44653-8_2
Reference: [15] Lin, F.-H.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena.Commun. Pure Appl. Math. 42 (1989), 789-814. MR 1003435, 10.1002/cpa.3160420605
Reference: [16] Lin, F.-H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals.Commun. Pure Appl. Math. 48 (1995), 501-537. MR 1329830, 10.1002/cpa.3160480503
Reference: [17] Lunardi, A.: Interpolation Theory.Appunti. Scuola Normale Superiore di Pisa 9. Lecture Notes. Scuola Normale Superiore di Pisa Edizioni della Normale, Pisa (2009). Zbl 1171.41001, MR 2523200
Reference: [18] Francia, J. L. Rubio de, Ruiz, F. J., Torrea, J. L.: Calderón-Zygmund theory for operator-valued kernels.Adv. Math. 62 (1986), 7-48. MR 0859252, 10.1016/0001-8708(86)90086-1
Reference: [19] Rudin, W.: Fourier Analysis on Groups.Interscience Tracts in Pure and Applied Mathematics, Vol. 12 Interscience Publishers, John Wiley, New York (1962). Zbl 0107.09603, MR 0152834
Reference: [20] Sauer, J.: Weighted resolvent estimates for the spatially periodic Stokes equations.Ann. Univ. Ferrara Sez. VII Sci. Mat. 61 (2015), 333-354 DOI 10.1007/s11565-014-0221-4. Zbl 1330.35342, MR 3421709, 10.1007/s11565-014-0221-4
Reference: [21] Sauer, J.: An extrapolation theorem in non-Euclidean geometries and its application to partial differential equations.(to appear) in J. Elliptic Parabol. Equ.
Reference: [22] Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data.Arch. Ration. Mech. Anal. 200 (2011), 1-19. Zbl 1285.35085, MR 2781584, 10.1007/s00205-010-0343-5
Reference: [23] Weil, A.: L'intégration Dans les Groupes Topologiques et Ses Applications.Actualités Scientifiques et Industrielles 869 Hermann & Cie., Paris French (1940). MR 0005741
Reference: [24] Weis, L.: A new approach to maximal {$L_p$}-regularity.Evolution Equations and Their Applications in Physical and Life Sciences. Proc. Bad Herrenalb Conf., Karlsruhe, 1999 Lect. Notes in Pure and Appl. Math. 215 Marcel Dekker, New York (2001), 195-214 G. Lumer et al. Zbl 0981.35030, MR 1818002
Reference: [25] Zimmermann, F.: On vector-valued Fourier multiplier theorems.Stud. Math. 93 (1989), 201-222. MR 1030488, 10.4064/sm-93-3-201-222
.

Files

Files Size Format View
CzechMathJ_66-2016-1_5.pdf 308.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo