Title:
|
A pure smoothness condition for Radó's theorem for $\alpha $-analytic functions (English) |
Author:
|
Daghighi, Abtin |
Author:
|
Wikström, Frank |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
57-62 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\Omega \subset \mathbb {C}^n$ be a bounded, simply connected $\mathbb C$-convex domain. Let $\alpha \in \mathbb Z_+^n$ and let $f$ be a function on $\Omega $ which is separately $C^{2\alpha _j-1}$-smooth with respect to $z_j$ (by which we mean jointly $C^{2 \alpha _j-1}$-smooth with respect to $\mathop {\rm Re} z_j$, $ \mathop {\rm Im} z_j$). If $f$ is $\alpha $-analytic on $\Omega \setminus f^{-1}(0)$, then $f$ is $\alpha $-analytic on $\Omega $. The result is well-known for the case $\alpha _i=1$, $1\leq i\leq n$, even when $f$ a priori is only known to be continuous. (English) |
Keyword:
|
$\alpha $-analytic function |
Keyword:
|
polyanalytic function |
Keyword:
|
zero set |
Keyword:
|
Radó's theorem |
MSC:
|
30C15 |
MSC:
|
32A99 |
MSC:
|
32U15 |
MSC:
|
35G05 |
idZBL:
|
Zbl 06587872 |
idMR:
|
MR3483221 |
DOI:
|
10.1007/s10587-016-0238-1 |
. |
Date available:
|
2016-04-07T14:52:27Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144876 |
. |
Reference:
|
[1] Avanissian, V., Traore, A.: Extension des théorèmes de Hartogs et de Lindelöf aux fonctions polyanalytiques de plusieurs variables.French C. R. Acad. Sci., Paris Sér. A-B 291 (1980), A263--A265. MR 0591746 |
Reference:
|
[2] Avanissian, V., Traore, A.: Sur les fonctions polyanalytiques de plusiers variables.C. R. Acad. Sci., Paris Sér. French A-B 286 (1978), A743--A746. MR 0589396 |
Reference:
|
[3] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory.Graduate Texts in Mathematics 137 Springer, New York (1992). MR 1184139 |
Reference:
|
[4] Balk, M. B.: Polyanalytic functions and their generalizations.Complex analysis I. Encycl. Math. Sci. 85 197-253 (1997). |
Reference:
|
[5] Balk, M. B.: A uniqueness theorem for polyanalytic functions.Izv. Akad. Nauk Armjan. SSR Ser. Fiz.-Mat. Nauk Russian 18 (1965), 3-14. MR 0190350 |
Reference:
|
[6] Cartan, H.: Sur une extension d'un theorème de Rad{ó}.French Math. Ann. 125 (1952), 49-50. MR 0050026, 10.1007/BF01343105 |
Reference:
|
[7] Chesnokov, I. Y.: On Removable Singularities of the Solution of Linear Differential Equations.Russian Dissertation, MGU Moskva (1991). |
Reference:
|
[8] Chesnokov, I. Y.: Removable singularities for solutions of linear partial differential equations.Mosc. Univ. Math. Bull. 45 37-38 (1990), translation from Vestn. Mosk. Univ., Ser. I 1990 (1990), 66-68 Russian. MR 1086608 |
Reference:
|
[9] Harvey, R., Polking, J.: Removable singularities of solutions of linear partial differential equations.Acta Math. 125 (1970), 39-56. MR 0279461, 10.1007/BF02838327 |
Reference:
|
[10] Král, J.: Extension results of the Radó type.Rev. Roum. Math. Pures Appl. 36 (1991), 71-76. MR 1144536 |
Reference:
|
[11] Král, J.: Some extension results concerning harmonic functions.J. London Math. Soc. 28 (1983), 62-70. MR 0703465, 10.1112/jlms/s2-28.1.62 |
Reference:
|
[12] Krantz, S. G.: Function Theory of Several Complex Variables.American Mathematical Society Chelsea Publishing, Providence (2001). Zbl 1087.32001, MR 1846625 |
Reference:
|
[13] Pokrovskii, A. V.: Removable singularities of solutions of elliptic equations.J. Math. Sci. 160 (2009), 61-83. Zbl 1183.35144, MR 2676340, 10.1007/s10958-009-9485-0 |
Reference:
|
[14] Radó, T.: Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit.Math. Z. 20 (1924), 1-6 German. MR 1544659, 10.1007/BF01188068 |
Reference:
|
[15] Tarkhanov, N. N.: The Analysis of Solutions of Elliptic Equations.Kluwer Academic Publishers Dordrecht (1997). MR 1447439 |
. |