Previous |  Up |  Next

Article

Title: A pure smoothness condition for Radó's theorem for $\alpha $-analytic functions (English)
Author: Daghighi, Abtin
Author: Wikström, Frank
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 57-62
Summary lang: English
.
Category: math
.
Summary: Let $\Omega \subset \mathbb {C}^n$ be a bounded, simply connected $\mathbb C$-convex domain. Let $\alpha \in \mathbb Z_+^n$ and let $f$ be a function on $\Omega $ which is separately $C^{2\alpha _j-1}$-smooth with respect to $z_j$ (by which we mean jointly $C^{2 \alpha _j-1}$-smooth with respect to $\mathop {\rm Re} z_j$, $ \mathop {\rm Im} z_j$). If $f$ is $\alpha $-analytic on $\Omega \setminus f^{-1}(0)$, then $f$ is $\alpha $-analytic on $\Omega $. The result is well-known for the case $\alpha _i=1$, $1\leq i\leq n$, even when $f$ a priori is only known to be continuous. (English)
Keyword: $\alpha $-analytic function
Keyword: polyanalytic function
Keyword: zero set
Keyword: Radó's theorem
MSC: 30C15
MSC: 32A99
MSC: 32U15
MSC: 35G05
idZBL: Zbl 06587872
idMR: MR3483221
DOI: 10.1007/s10587-016-0238-1
.
Date available: 2016-04-07T14:52:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144876
.
Reference: [1] Avanissian, V., Traore, A.: Extension des théorèmes de Hartogs et de Lindelöf aux fonctions polyanalytiques de plusieurs variables.French C. R. Acad. Sci., Paris Sér. A-B 291 (1980), A263--A265. MR 0591746
Reference: [2] Avanissian, V., Traore, A.: Sur les fonctions polyanalytiques de plusiers variables.C. R. Acad. Sci., Paris Sér. French A-B 286 (1978), A743--A746. MR 0589396
Reference: [3] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory.Graduate Texts in Mathematics 137 Springer, New York (1992). MR 1184139
Reference: [4] Balk, M. B.: Polyanalytic functions and their generalizations.Complex analysis I. Encycl. Math. Sci. 85 197-253 (1997).
Reference: [5] Balk, M. B.: A uniqueness theorem for polyanalytic functions.Izv. Akad. Nauk Armjan. SSR Ser. Fiz.-Mat. Nauk Russian 18 (1965), 3-14. MR 0190350
Reference: [6] Cartan, H.: Sur une extension d'un theorème de Rad{ó}.French Math. Ann. 125 (1952), 49-50. MR 0050026, 10.1007/BF01343105
Reference: [7] Chesnokov, I. Y.: On Removable Singularities of the Solution of Linear Differential Equations.Russian Dissertation, MGU Moskva (1991).
Reference: [8] Chesnokov, I. Y.: Removable singularities for solutions of linear partial differential equations.Mosc. Univ. Math. Bull. 45 37-38 (1990), translation from Vestn. Mosk. Univ., Ser. I 1990 (1990), 66-68 Russian. MR 1086608
Reference: [9] Harvey, R., Polking, J.: Removable singularities of solutions of linear partial differential equations.Acta Math. 125 (1970), 39-56. MR 0279461, 10.1007/BF02838327
Reference: [10] Král, J.: Extension results of the Radó type.Rev. Roum. Math. Pures Appl. 36 (1991), 71-76. MR 1144536
Reference: [11] Král, J.: Some extension results concerning harmonic functions.J. London Math. Soc. 28 (1983), 62-70. MR 0703465, 10.1112/jlms/s2-28.1.62
Reference: [12] Krantz, S. G.: Function Theory of Several Complex Variables.American Mathematical Society Chelsea Publishing, Providence (2001). Zbl 1087.32001, MR 1846625
Reference: [13] Pokrovskii, A. V.: Removable singularities of solutions of elliptic equations.J. Math. Sci. 160 (2009), 61-83. Zbl 1183.35144, MR 2676340, 10.1007/s10958-009-9485-0
Reference: [14] Radó, T.: Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit.Math. Z. 20 (1924), 1-6 German. MR 1544659, 10.1007/BF01188068
Reference: [15] Tarkhanov, N. N.: The Analysis of Solutions of Elliptic Equations.Kluwer Academic Publishers Dordrecht (1997). MR 1447439
.

Files

Files Size Format View
CzechMathJ_66-2016-1_6.pdf 246.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo