Title:
|
A compactness result for polyharmonic maps in the critical dimension (English) |
Author:
|
Zheng, Shenzhou |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
137-150 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For $n=2m\ge 4$, let $\Omega \in \mathbb {R}^n$ be a bounded smooth domain and ${\mathcal {N}\subset \mathbb {R}^L}$ a compact smooth Riemannian manifold without boundary. Suppose that $\{u_k\}\in W^{m,2}(\Omega ,\mathcal {N})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps $$\label {m-polyharmonic} \frac {\rm d}{{\rm d} t}\Big |_{t=0}E_m(\Pi (u+t\xi ))=0 $$ with $\Phi _k\rightarrow 0$ in $(W^{m,2}(\Omega ,\mathcal {N}))^*$ and $u_k\rightharpoonup u$ weakly in $W^{m,2}(\Omega ,\mathcal {N})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^{m,2}$ topology. (English) |
Keyword:
|
polyharmonic map |
Keyword:
|
compactness |
Keyword:
|
Coulomb moving frame |
Keyword:
|
Palais-Smale sequence |
Keyword:
|
removable singularity |
MSC:
|
35J35 |
MSC:
|
35J48 |
MSC:
|
58J05 |
idZBL:
|
Zbl 06587880 |
idMR:
|
MR3483229 |
DOI:
|
10.1007/s10587-016-0246-1 |
. |
Date available:
|
2016-04-07T15:02:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144880 |
. |
Reference:
|
[1] Angelsberg, G., Pumberger, D.: A regularity result for polyharmonic maps with higher integrability.Ann. Global Anal. Geom. 35 (2009), 63-81. Zbl 1172.58003, MR 2480664, 10.1007/s10455-008-9122-z |
Reference:
|
[2] Bethuel, F.: Weak limits of Palais-Smale sequences for a class of critical functionals.Calc. Var. Partial Differ. Equ. 1 (1993), 267-310. MR 1261547, 10.1007/BF01191297 |
Reference:
|
[3] Freire, A., Müller, S., Struwe, M.: Weak compactness of wave maps and harmonic maps.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 725-754. MR 1650966, 10.1016/S0294-1449(99)80003-1 |
Reference:
|
[4] Gastel, A.: The extrinsic polyharmonic map heat flow in the critical dimension.Adv. Geom. 6 (2006), 501-521. Zbl 1136.58010, MR 2267035, 10.1515/ADVGEOM.2006.031 |
Reference:
|
[5] Gastel, A., Scheven, C.: Regularity of polyharmonic maps in the critical dimension.Commun. Anal. Geom. 17 (2009), 185-226. Zbl 1183.58010, MR 2520907, 10.4310/CAG.2009.v17.n2.a2 |
Reference:
|
[6] Goldstein, P., Strzelecki, A., Zatorska-Goldstein, A.: On polyharmonic maps into spheres in the critical dimension.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1387-1405. Zbl 1188.35071, MR 2542730, 10.1016/j.anihpc.2008.10.008 |
Reference:
|
[7] Hélein, F.: Regularity of weakly harmonic maps between a surface and a Riemannian manifold.C. R. Acad. Sci., Paris, Sér. (1) 312 French (1991), 591-596. MR 1101039 |
Reference:
|
[8] Lamm, T., Rivière, T.: Conservation laws for fourth order systems in four dimensions.Commun. Partial Differ. Equations 33 (2008), 245-262. Zbl 1139.35328, MR 2398228, 10.1080/03605300701382381 |
Reference:
|
[9] Laurain, P., Rivière, T.: Energy quantization for biharmonic maps.Adv. Calc. Var. 6 (2013), 191-216. Zbl 1275.35098, MR 3043576, 10.1515/acv-2012-0105 |
Reference:
|
[10] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I.Rev. Mat. Iberoam. 1 (1985), 145-201. Zbl 0704.49005, MR 0834360, 10.4171/RMI/6 |
Reference:
|
[11] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II.Rev. Mat. Iberoam. 1 (1985), 45-121. MR 0850686, 10.4171/RMI/12 |
Reference:
|
[12] Mou, L., Wang, C.: Bubbling phenomena of Palais-Smale-like sequences of $m$-harmonic type systems.Calc. Var. Partial Differ. Equ. 4 (1996), 341-367. MR 1393269, 10.1007/BF01190823 |
Reference:
|
[13] Rivière, T.: Conservation laws for conformally invariant variational problems.Invent. Math. 168 (2007), 1-22. Zbl 1128.58010, MR 2285745, 10.1007/s00222-006-0023-0 |
Reference:
|
[14] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres.Ann. Math. (2) 113 (1981), 1-24. MR 0604040 |
Reference:
|
[15] Strzelecki, P.: On biharmonic maps and their generalizations.Calc. Var. Partial Differ. Equ. 18 (2003), 401-432. Zbl 1106.35021, MR 2020368, 10.1007/s00526-003-0210-4 |
Reference:
|
[16] Strzelecki, P., Zatorska-Goldstein, A.: A compactness theorem for weak solutions of higher-dimensional $H$-systems.Duke Math. J. 121 (2004), 269-284. Zbl 1054.58008, MR 2034643, 10.1215/S0012-7094-04-12123-2 |
Reference:
|
[17] Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1 (1998), 479-500. MR 1662313 |
Reference:
|
[18] Uhlenbeck, K. K.: Connections with $L^p$ bounds on curvature.Commun. Math. Phys. 83 (1982), 31-42. MR 0648356, 10.1007/BF01947069 |
Reference:
|
[19] Wang, C.: A compactness theorem of $n$-harmonic maps.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 509-519. Zbl 1229.58017, MR 2145723, 10.1016/j.anihpc.2004.10.007 |
Reference:
|
[20] Zheng, S.: Weak compactness of biharmonic maps.Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 190, 7 pages. Zbl 1288.31012, MR 3001676 |
. |