Previous |  Up |  Next

Article

Title: Cartan-Eilenberg projective, injective and flat complexes (English)
Author: Zhai, Xiaorui
Author: Zhang, Chunxia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 151-167
Summary lang: English
.
Category: math
.
Summary: Let $R$ be an associative ring with identity and $\mathcal {F}$ a class of $R$-modules. In this article: we first give a detailed treatment of Cartan-Eilenberg $\mathcal {F}$ complexes and extend the basic properties of the class $\mathcal {F}$ to the class ${\rm CE}(\mathcal {F}$). Secondly, we study and give some equivalent characterizations of Cartan-Eilenberg projective, injective and flat complexes which are similar to projective, injective and flat modules, respectively. As applications, we characterize some classical rings in terms of these complexes, including coherent, Noetherian, von Neumann regular rings, $\rm QF$ rings, semisimple rings, hereditary rings and perfect rings. (English)
Keyword: Cartan-Eilenberg projective complex
Keyword: Cartan-Eilenberg injective complex
Keyword: Cartan-Eilenberg flat complex
MSC: 18G10
MSC: 18G25
MSC: 18G35
idZBL: Zbl 06587881
idMR: MR3483230
DOI: 10.1007/s10587-016-0247-0
.
Date available: 2016-04-07T15:03:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144891
.
Reference: [1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics 13 Springer, New York (1992). Zbl 0765.16001, MR 1245487, 10.1007/978-1-4612-4418-9_2
Reference: [2] Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings.Trans. Am. Math. Soc. 95 (1960), 466-488. MR 0157984, 10.1090/S0002-9947-1960-0157984-8
Reference: [3] Bennis, D., Mahdou, N.: Global Gorenstein dimensions.Proc. Amer. Math. Soc. 138 (2010), 461-465. Zbl 1205.16007, MR 2557164, 10.1090/S0002-9939-09-10099-0
Reference: [4] Cartan, H., Eilenberg, S.: Homological Algebra.Princeton Mathematical Series 19 Princeton University Press 15, Princeton (1999). MR 1731415
Reference: [5] Chase, S. U.: Direct products of modules.Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260, 10.1090/S0002-9947-1960-0120260-3
Reference: [6] Cheatham, T. J., Stone, D. R.: Flat and projective character modules.Proc. Am. Math. Soc. 81 (1981), 175-177. Zbl 0458.16014, MR 0593450, 10.1090/S0002-9939-1981-0593450-2
Reference: [7] Enochs, E. E.: Cartan-Eilenberg complexes and resolutions.J. Algebra 342 (2011), 16-39. Zbl 1246.18005, MR 2824527, 10.1016/j.jalgebra.2011.05.011
Reference: [8] Enochs, E. E.: Injective and flat covers, envelopes and resolvents.Isr. J. Math. 39 (1981), 189-209. Zbl 0464.16019, MR 0636889, 10.1007/BF02760849
Reference: [9] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. Volume 1.De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2011). MR 2857612
Reference: [10] Enochs, E. E., Rozas, J. R. García: Tensor products of complexes.Math. J. Okayama Univ. 39 (1997), 17-39. MR 1680739
Reference: [11] Enochs, E. E., López-Ramos, J. A.: Kaplansky classes.Rend. Sem. Mat. Univ. Padova 107 (2002), 67-79. Zbl 1099.13019, MR 1926201
Reference: [12] Fieldhouse, D. J.: Character modules.Comment. Math. Helv. 46 (1971), 274-276. Zbl 0219.16017, MR 0294408, 10.1007/BF02566844
Reference: [13] Rozas, J. R. Garc{í}a: Covers and Envelopes in the Category of Complexes of Modules.Chapman & Hall/CRC Research Notes in Mathematics 407 Chapman and Hall/CRC, Boca Raton (1999). MR 1693036
Reference: [14] Iacob, A.: DG-injective covers, \#-injective covers.Commun. Algebra 39 (2011), 1673-1685. MR 2821500, 10.1080/00927871003739004
Reference: [15] Rotman, J. J.: An Introduction to Homological Algebra.Universitext Springer, Berlin (2009). Zbl 1157.18001, MR 2455920
Reference: [16] Verdier, J.-L.: Derived Categories of Abelian Categories.Astérisque 239. Société Mathématique de France Paris French (1996). MR 1453167
Reference: [17] Wang, Z., Liu, Z.: Complete cotorsion pairs in the category of complexes.Turk. J. Math. 37 (2013), 852-862. Zbl 1285.18016, MR 3105498
Reference: [18] Xu, J.: Flat Covers of Modules.Lecture Notes in Mathematics 1634 Springer, Berlin (1996). Zbl 0860.16002, MR 1438789, 10.1007/BFb0094173
Reference: [19] Yang, G., Liang, L.: Cartan-Eilenberg Gorenstein flat complexes.Math. Scand. 114 (2014), 5-25. Zbl 1299.13018, MR 3178104, 10.7146/math.scand.a-16637
Reference: [20] Yang, G., Liang, L.: Cartan-Eilenberg Gorenstein projective complexes.J. Algebra Appl. 13 (2014), Article ID 1350068, 17 pages. Zbl 1292.16005, MR 3096849, 10.1142/S0219498813500680
.

Files

Files Size Format View
CzechMathJ_66-2016-1_15.pdf 302.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo