Previous |  Up |  Next

Article

Title: The index for Fredholm elements in a Banach algebra via a trace II (English)
Author: Grobler, Jacobus J.
Author: Raubenheimer, Heinrich
Author: Swartz, Andre
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 205-211
Summary lang: English
.
Category: math
.
Summary: We show that the index defined via a trace for Fredholm elements in a Banach algebra has the property that an index zero Fredholm element can be decomposed as the sum of an invertible element and an element in the socle. We identify the set of index zero Fredholm elements as an upper semiregularity with the Jacobson property. The Weyl spectrum is then characterized in terms of the index. (English)
Keyword: trace
Keyword: index
Keyword: Fredholm element
MSC: 46H05
MSC: 47A10
MSC: 47A53
idZBL: Zbl 06587884
idMR: MR3483233
DOI: 10.1007/s10587-016-0250-5
.
Date available: 2016-04-07T15:06:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144883
.
Reference: [1] Aupetit, B.: A Primer on Spectral Theory.Universitext Springer, New York (1991). Zbl 0715.46023, MR 1083349
Reference: [2] Aupetit, B., Mouton, H. du T.: Trace and determinant in Banach algebras.Stud. Math. 121 (1996), 115-136. Zbl 0872.46028, MR 1418394
Reference: [3] Bonsall, F. F., Duncan, J.: Complete Normed Algebras.Ergebnisse der Mathematik und ihrer Grenzgebiete 80 Springer, New York (1973). Zbl 0271.46039, MR 0423029
Reference: [4] Grobler, J. J., Raubenheimer, H.: The index for Fredholm elements in a Banach algebra via a trace.Stud. Math. 187 (2008), 281-297. Zbl 1166.46024, MR 2417458, 10.4064/sm187-3-5
Reference: [5] Kordula, V., Müller, V.: On the axiomatic theory of spectrum.Stud. Math. 119 (1996), 109-128. MR 1391471
Reference: [6] Kraljević, H., Suljagić, S., Veselić, K.: Index in semisimple Banach algebras.Glas. Mat., III. Ser. 17 (1982), 73-95. MR 0682475
Reference: [7] Mbekhta, M., Müller, V.: On the axiomatic theory of spectrum. II.Stud. Math. 119 (1996), 129-147. MR 1391472, 10.4064/sm-119-2-129-147
Reference: [8] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras.Operator Theory: Advances and Applications 139 Birkhäuser, Basel (2007). Zbl 1208.47001, MR 2355630
Reference: [9] Müller, V.: Axiomatic theory of spectrum. III: Semiregularities.Stud. Math. 142 (2000), 159-169. MR 1792602
Reference: [10] Puhl, J.: The trace of finite and nuclear elements in Banach algebras.Czech. Math. J. 28 (1978), 656-676. Zbl 0394.46041, MR 0506439
.

Files

Files Size Format View
CzechMathJ_66-2016-1_18.pdf 224.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo