Full entry |
PDF
(0.2 MB)
Feedback

semiconvex function with general modulus; difference of two semiconvex functions; $\omega$-nondecreasing function; $[\omega]$-variation; regulated function

References:

[1] Benyamini Y., Lindenstrauss J.: **Geometric Nonlinear Functional Analysis**. Vol. 1, Colloquium Publications, 48, American Mathematical Society, Providence, 2000. MR 1727673 | Zbl 0946.46002

[2] Bruckner A.: **Differentiation of Real Functions**. CRM Monograph Series, 5, American Mathematical Society, Providence, RI, 1994. MR 1274044

[3] Correa R., Jofré A.: **Tangentially continuous directional derivatives in nonsmooth analysis**. J. Optim. Theory Appl. 61 (1989), 1–21. DOI 10.1007/BF00940840 | MR 0993912

[4] Cannarsa P., Sinestrari C.: **Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control**. Progress in Nonlinear Differential Equations and their Applications 58, Birkhäuser, Boston, 2004. MR 2041617 | Zbl 1095.49003

[5] Duda J., Zajíček L.: **Semiconvex functions: representations as suprema of smooth functions and extensions**. J. Convex Anal. 16 (2009), 239–260. MR 2531202

[6] Duda J., Zajíček L.: **Smallness of singular sets of semiconvex functions in separable Banach spaces**. J. Convex Anal. 20 (2013), 573–598. MR 3098482

[7] Fabian M.: **Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces**. Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. MR 1461271 | Zbl 0883.46011

[8] Fraňková D.: **Regulated functions**. Math. Bohem. 116 (1991), 20–59. MR 1100424

[9] Goffman C., Moran G., Waterman D.: **The structure of regulated functions**. Proc. Amer. Math. Soc. 57 (1976), 61–65. DOI 10.1090/S0002-9939-1976-0401993-5 | MR 0401993

[10] Jourani A., Thibault L., Zagrodny D.: **$C^{1,\omega(\cdot)}$-regularity and Lipschitz-like properties of subdifferential**. Proc. London Math. Soc. 105 (2012), 189–223. MR 2948792

[11] Mifflin R.: **Semismooth and semiconvex functions in constrained optimization**. SIAM J. Control Optimization 15 (1977), 959–972. DOI 10.1137/0315061 | MR 0461556 | Zbl 0376.90081

[12] Nagai H.V., Luc D.T., Théra M.: **Approximate convex functions**. J. Nonlinear Convex Anal. 1 (2000), 155–176. MR 1777137

[13] Spingarn J. E.: **Submonotone subdifferentials of Lipschitz functions**. Trans. Amer. Math. Soc. 264 (1981) 77–89. DOI 10.1090/S0002-9947-1981-0597868-8 | MR 0597868 | Zbl 0465.26008