Previous |  Up |  Next

Article

Title: Strongly regular family of boundary-fitted tetrahedral meshes of bounded $C^2$ domains (English)
Author: Hošek, Radim
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 3
Year: 2016
Pages: 233-251
Summary lang: English
.
Category: math
.
Summary: We give a constructive proof that for any bounded domain of the class $C^2$ there exists a strongly regular family of boundary-fitted tetrahedral meshes. We adopt a refinement technique introduced by Křížek and modify it so that a refined mesh is again boundary-fitted. An alternative regularity criterion based on similarity with the Sommerville tetrahedron is used and shown to be equivalent to other standard criteria. The sequence of regularities during the refinement process is estimated from below and shown to converge to a positive number by virtue of the convergence of $q$-Pochhammer symbol. The final result takes the form of an implication with an assumption that can be obviously fulfilled for any bounded $C^2$ domain. (English)
Keyword: boundary fitted mesh
Keyword: strongly regular family
Keyword: Sommerville tetrahedron
Keyword: Sommerville regularity ratio
Keyword: mesh refinement
Keyword: tetrahedral mesh
MSC: 65N30
MSC: 65N50
idZBL: Zbl 06587851
idMR: MR3502110
DOI: 10.1007/s10492-016-0130-1
.
Date available: 2016-05-19T08:49:11Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145699
.
Reference: [1] Audin, M.: Geometry.Universitext Springer, Berlin (2003), 2012. Zbl 1194.01029, MR 1941838, 10.1007/978-3-642-56127-6
Reference: [2] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\mathbb R}^d$.Appl. Math. Lett. 22 1210-1212 (2009). MR 2532540, 10.1016/j.aml.2009.01.031
Reference: [3] Edelsbrunner, H.: Triangulations and meshes in computational geometry.Acta Numerica 9 133-213 (2000). Zbl 1004.65024, MR 1883628, 10.1017/S0962492900001331
Reference: [4] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence (1998). Zbl 0902.35002, MR 1625845
Reference: [5] Feireisl, E., Hošek, R., Maltese, D., Novotný, A.: Error estimates for a numerical method for the compressible Navier-{S}tokes system on sufficiently smooth domains.(to appear) in ESAIM, Math. Model. Numer. Anal. (2016). Preprint IM-2015-46, available at http://math.cas.cz/fichier/preprints/IM\char'137 20150826112605\char'137 92.pdf, 2015. 10.1051/m2an/2016022
Reference: [6] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press Cambridge (2013). Zbl 1267.15001, MR 2978290
Reference: [7] Hošek, R.: Face-to-face partition of 3{D} space with identical well-centered tetrahedra.Appl. Math., Praha 60 637-651 (2015). Zbl 1363.65209, MR 3436566, 10.1007/s10492-015-0115-5
Reference: [8] Korotov, S., Křížek, M., Neittaanmäki, P.: On the existence of strongly regular families of triangulations for domains with a piecewise smooth boundary.Appl. Math., Praha 44 33-42 (1999). Zbl 1060.65665, MR 1666850, 10.1023/A:1022268103114
Reference: [9] Křížek, M.: An equilibrium finite element method in three-dimensional elasticity.Apl. Mat. 27 46-75 (1982). Zbl 0488.73072, MR 0640139
Reference: [10] Sommerville, D. M. Y.: Space-filling tetrahedra in Euclidean space.Proc. Edinburgh Math. Soc. 41 49-57 (1923).
Reference: [11] Zhang, S.: Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes.Houston J. Math. 21 541-556 (1995). Zbl 0855.65124, MR 1352605
.

Files

Files Size Format View
AplMat_61-2016-3_1.pdf 317.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo