Previous |  Up |  Next

Article

Title: An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations (English)
Author: Beilina, Larisa
Author: Hosseinzadegan, Samar
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 3
Year: 2016
Pages: 253-286
Summary lang: English
.
Category: math
.
Summary: We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes. (English)
Keyword: Maxwell's system
Keyword: coefficient inverse problem
Keyword: Tikhonov functional
Keyword: Lagrangian approach
Keyword: a posteriori error estimate
MSC: 65M06
MSC: 65M22
MSC: 65M32
MSC: 65M60
MSC: 65N30
idZBL: Zbl 06587852
idMR: MR3502111
DOI: 10.1007/s10492-016-0131-0
.
Date available: 2016-05-19T08:51:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145701
.
Reference: [1] Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations.J. Comput. Phys. 109 (1993), 222-237. Zbl 0795.65087, MR 1253460, 10.1006/jcph.1993.1214
Reference: [2] Bakushinsky, A. B., Kokurin, M. Y., Smirnova, A.: Iterative Methods for Ill-Posed Problems. An Introduction.Inverse and Ill-Posed Problems Series 54 Walter de Gruyter, Berlin (2011). Zbl 1215.47013, MR 2757493
Reference: [3] Beilina, L.: Adaptive hybrid FEM/FDM methods for inverse scattering problems.Inverse Problems and Information Technologies, V.1, N.3 73-116 (2002).
Reference: [4] Beilina, L.: Adaptive finite element method for a coefficient inverse problem for Maxwell's system.Appl. Anal. 90 (2011), 1461-1479. Zbl 1223.78010, MR 2832218, 10.1080/00036811.2010.502116
Reference: [5] Beilina, L.: Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell's system.Cent. European J. Math. 11 (2013), 702-733, DOI 10.2478/s11533-013-0202-3. Zbl 1267.78044, MR 3015394, 10.2478/s11533-013-0202-3
Reference: [6] Beilina, L., Cristofol, M., Niinimäki, K.: Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations.Inverse Probl. Imaging 9 1-25 (2015). Zbl 1308.35296, MR 3305884
Reference: [7] Beilina, L., Hosseinzadegan, S.: An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations.ArXiv:1510.07525 (2015). MR 3502111
Reference: [8] Beilina, L., Klibanov, M. V.: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems.Springer, New York (2012). Zbl 1255.65168
Reference: [9] Beilina, L., Klibanov, M. V., Kokurin, M. Yu.: Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem.J. Math. Sci., New York 167 279-325 (2010), translation from Probl. Mat. Anal. 46 3-44 (2010), Russian original. Zbl 1286.65147, MR 2839023, 10.1007/s10958-010-9921-1
Reference: [10] Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B.: Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity.Inverse Probl. 30 28 pages, Article ID 105007 (2014). Zbl 1327.35429, MR 3274607
Reference: [11] Bellassoued, M., Cristofol, M., Soccorsi, E.: Inverse boundary value problem for the dynamical heterogeneous Maxwell's system.Inverse Probl. 28 18 pages, Article ID 095009 (2012). Zbl 1250.35181, MR 2966179
Reference: [12] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15 Springer, Berlin (2002). Zbl 1012.65115, MR 1894376, 10.1007/978-1-4757-3658-8_7
Reference: [13] P. Ciarlet, Jr., H. Wu, J. Zou: Edge element methods for Maxwell's equations with strong convergence for Gauss' laws.SIAM J. Numer. Anal. 52 (2014), 779-807. MR 3188392, 10.1137/120899856
Reference: [14] Cohen, G. C.: Higher Order Numerical Methods for Transient Wave Equations.Scientific Computation Springer, Berlin (2002). Zbl 0985.65096, MR 1870851
Reference: [15] Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics.IBM J. Res. Dev. 11 (1967), 215-234. Zbl 0145.40402, MR 0213764, 10.1147/rd.112.0215
Reference: [16] Engl, H. W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems.Mathematics and Its Applications 375 Kluwer Academic Publishers, Dordrecht (1996). Zbl 0859.65054, MR 1408680
Reference: [17] Eriksson, K., Estep, D., Johnson, C.: Applied Mathematics: Body and Soul. Vol. 3. Calculus in Several Dimensions.Springer, Berlin (2004). MR 2020205
Reference: [18] Hosseinzadegan, S.: Iteratively regularized adaptive finite element method for reconstruction of coefficients in Maxwell's system.Master's Thesis in Applied Mathematics Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University (2015).
Reference: [19] Ito, K., Jin, B., Takeuchi, T.: Multi-parameter Tikhonov regularization.Methods Appl. Anal. 18 (2011), 31-46. Zbl 1285.65032, MR 2804535
Reference: [20] Johnson, C., Szepessy, A.: Adaptive finite element methods for conservation laws based on a posteriori error estimates.Commun. Pure Appl. Math. 48 199-234 (1995). Zbl 0826.65088, MR 1322810, 10.1002/cpa.3160480302
Reference: [21] Klibanov, M. V., Bakushinsky, A. B., Beilina, L.: Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess.J. Inverse Ill-Posed Probl. 19 83-105 (2011). Zbl 1279.35113, MR 2794397, 10.1515/jiip.2011.024
Reference: [22] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics 50 Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1990). MR 1066462
Reference: [23] Ladyzhenskaya, O. A.: The Boundary Value Problems of Mathematical Physics.Applied Mathematical Sciences 49 Springer, New York (1985). Zbl 0588.35003, MR 0793735, 10.1007/978-1-4757-4317-3
Reference: [24] Malmberg, J. B.: A posteriori error estimation in a finite element method for reconstruction of dielectric permittivity.ArXiv:1502.07658 (2015). MR 3279172
Reference: [25] Malmberg, J. B.: A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system.L. Beilina Inverse Problems and Applications Selected Papers Based on the Presentations at the Third Annual Workshop on Inverse Problems, Stockholm, 2013 Springer Proceedings in Mathematics and Statistics 120 (2015), 43-53. Zbl 1319.78014, MR 3343199
Reference: [26] Munz, C. D., Omnes, P., Schneider, R., Sonnendrücker, E., Voß, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model.J. Comput. Phys. 161 (2000), 484-511. Zbl 0970.78010, MR 1764247, 10.1006/jcph.2000.6507
Reference: [27] PETSc Team: PETSc, Portable, Extensible Toolkit for Scientific Computation.http://www.mcs.anl.gov/petsc/.
Reference: [28] Pironneau, O.: Optimal Shape Design for Elliptic Systems.Springer Series in Computational Physics Springer, New York (1984). Zbl 0534.49001, MR 0725856
Reference: [29] Scott, L. R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions.Math. Comput. 54 (1990), 483-493. Zbl 0696.65007, MR 1011446, 10.1090/S0025-5718-1990-1011446-7
Reference: [30] Smith, D. R., Schultz, S., Markoš, P., Soukoulis, C. M.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients.Phys. Rev. B 65 (2002), DOI:10.1103/PhysRevB.65.195104. 10.1103/PhysRevB.65.195104
Reference: [31] Tikhonov, A. N., Goncharskiy, A. V., Stepanov, V. V., Kochikov, I. V.: Ill-posed problems of the image processing.DAN USSR 294 832-837 (1987). MR 0898748
Reference: [32] Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., Yagola, A. G.: Numerical Methods for the Solution of Ill-Posed Problems. Rev.Mathematics and Its Applications 328 Kluwer Academic Publishers, Dordrecht (1995). Zbl 0831.65059, MR 1350538
Reference: [33] waves24.com: WavES: The software package.http://www.waves24.com/.
.

Files

Files Size Format View
AplMat_61-2016-3_2.pdf 561.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo