Previous |  Up |  Next


natural convection problem; projection method; stability; convergence
We consider the second-order projection schemes for the time-dependent natural convection problem. By the projection method, the natural convection problem is decoupled into two linear subproblems, and each subproblem is solved more easily than the original one. The error analysis is accomplished by interpreting the second-order time discretization of a perturbed system which approximates the time-dependent natural convection problem, and the rigorous error analysis of the projection schemes is presented. Our main results of the second order projection schemes for the time-dependent natural convection problem are that the convergence for the velocity and temperature are strongly second order in time while that for the pressure is strongly first order in time.
[1] Araya, R., Barrenechea, G. R., Poza, A. H., Valentin, F.: Convergence analysis of a residual local projection finite element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 50 (2012), 669-699. DOI 10.1137/110829283 | MR 2914281
[2] Chen, G., Feng, M., Zhou, H.: Local projection stabilized method on unsteady Navier-Stokes equations with high Reynolds number using equal order interpolation. Appl. Math. Comput. 243 (2014), 465-481. MR 3244494 | Zbl 1335.76033
[3] Chorin, A. J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968), 745-762. DOI 10.1090/S0025-5718-1968-0242392-2 | MR 0242392 | Zbl 0198.50103
[4] Çıbık, A., Kaya, S.: A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal. Appl. 381 (2011), 469-484. DOI 10.1016/j.jmaa.2011.02.020 | MR 2802085 | Zbl 1331.76066
[5] Du, B., Su, H., Feng, X.: Two-level variational multiscale method based on the decoupling approach for the natural convection problem. Int. Commun. Heat. Mass. 61 (2015), 128-139. DOI 10.1016/j.icheatmasstransfer.2014.12.004
[6] He, Y.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 41 (2003), 1263-1285. DOI 10.1137/S0036142901385659 | MR 2034880 | Zbl 1130.76365
[7] He, Y.: Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with {$H^2$} or {$H^1$} initial data. Numer. Methods Partial Differ. Equations 21 (2005), 875-904. DOI 10.1002/num.20065 | MR 2154224 | Zbl 1076.76059
[8] Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982), 275-311. DOI 10.1137/0719018 | MR 0650052 | Zbl 0487.76035
[9] Manzari, M. T.: An explicit finite element algorithm for convection heat transfer problems. Int. J. Numer. Methods Heat Fluid Flow 9 (1999), 860-877. DOI 10.1108/09615539910297932 | Zbl 0955.76050
[10] Pyo, J. H.: A classification of the second order projection methods to solve the Navier-Stokes equations. Korean J. Math. 22 (2014), 645-658. DOI 10.11568/kjm.2014.22.4.645
[11] Qian, Y. X., Zhang, T.: On error estimates of the projection method for the time-dependent natural convection problem: first order scheme. Submitted to Comput. Math. Appl.
[12] Qian, Y. X., Zhang, T.: On error estimates of a higher projection method for the time-dependent natural convection problem. Submitted to Front. Math. China.
[13] Shen, J.: On error estimates of projection methods for Navier-Stokes equations: First-order schemes. SIAM J. Numer. Anal. 29 (1992), 57-77. DOI 10.1137/0729004 | MR 1149084 | Zbl 0741.76051
[14] Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer. Math. 62 (1992), 49-73. DOI 10.1007/BF01396220 | MR 1159045
[15] Shen, S.: The finite element analysis for the conduction-convection problems. Math. Numer. Sin. 16 (1994), 170-182 Chinese. MR 1392611 | Zbl 0922.76105
[16] Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes. Math. Comput. 65 (1996), 1039-1065. DOI 10.1090/S0025-5718-96-00750-8 | MR 1348047 | Zbl 0855.76049
[17] Tabata, M., Tagami, D.: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100 (2005), 351-372. DOI 10.1007/s00211-005-0589-2 | MR 2135787 | Zbl 1082.65090
[18] Témam, R.: Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. French 33 (1969), 377-385. DOI 10.1007/BF00247696 | MR 0244654 | Zbl 0207.16904
[19] Témam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications, Vol. 2 North-Holland, Amsterdam (1984). MR 0609732 | Zbl 0568.35002
[20] Vreman, A. W.: The projection method for the incompressible Navier-Stokes equations: the pressure near a no-slip wall. J. Comput. Phys. 263 (2014), 353-374. DOI 10.1016/ | MR 3165701 | Zbl 1349.76547
[21] Zhang, Y., Hou, Y., Zhao, J.: Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem. Comput. Math. Appl. 68 (2014), 543-567. DOI 10.1016/j.camwa.2014.06.008 | MR 3237861 | Zbl 1362.76056
[22] Zhang, T., Tao, Z.: Decoupled scheme for time-dependent natural convection problem II: time semidiscreteness. Math. Probl. Eng. 2014 (2014), Article ID 726249, 23 pages. MR 3294924
[23] Zhang, T., Yuan, J., Si, Z.: Decoupled two-grid finite element method for the time-dependent natural convection problem I: Spatial discretization. Numer. Methods Partial Differ. Equations 31 (2015), 2135-2168. DOI 10.1002/num.21987 | MR 3403723 | Zbl 1336.65172
[24] Zhang, X., Zhang, P.: Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method. Eng. Anal. Bound. Elem. 61 (2015), 287-300. DOI 10.1016/j.enganabound.2015.08.005 | MR 3400016
[25] Zhang, T., Zhao, X., Huang, P.: Decoupled two level finite element methods for the steady natural convection problem. Numer. Algorithms 68 (2015), 837-866. DOI 10.1007/s11075-014-9874-4 | MR 3325828 | Zbl 1311.76074
Partner of
EuDML logo