Previous |  Up |  Next

Article

Title: The second order projection method in time for the time-dependent natural convection problem (English)
Author: Qian, Yanxia
Author: Zhang, Tong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 3
Year: 2016
Pages: 299-315
Summary lang: English
.
Category: math
.
Summary: We consider the second-order projection schemes for the time-dependent natural convection problem. By the projection method, the natural convection problem is decoupled into two linear subproblems, and each subproblem is solved more easily than the original one. The error analysis is accomplished by interpreting the second-order time discretization of a perturbed system which approximates the time-dependent natural convection problem, and the rigorous error analysis of the projection schemes is presented. Our main results of the second order projection schemes for the time-dependent natural convection problem are that the convergence for the velocity and temperature are strongly second order in time while that for the pressure is strongly first order in time. (English)
Keyword: natural convection problem
Keyword: projection method
Keyword: stability
Keyword: convergence
MSC: 65N15
MSC: 65N30
MSC: 76D07
idZBL: Zbl 06587854
idMR: MR3502113
DOI: 10.1007/s10492-016-0133-y
.
Date available: 2016-05-19T08:55:16Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145703
.
Reference: [1] Araya, R., Barrenechea, G. R., Poza, A. H., Valentin, F.: Convergence analysis of a residual local projection finite element method for the Navier-Stokes equations.SIAM J. Numer. Anal. 50 (2012), 669-699. MR 2914281, 10.1137/110829283
Reference: [2] Chen, G., Feng, M., Zhou, H.: Local projection stabilized method on unsteady Navier-Stokes equations with high Reynolds number using equal order interpolation.Appl. Math. Comput. 243 (2014), 465-481. Zbl 1335.76033, MR 3244494
Reference: [3] Chorin, A. J.: Numerical solution of the Navier-Stokes equations.Math. Comput. 22 (1968), 745-762. Zbl 0198.50103, MR 0242392, 10.1090/S0025-5718-1968-0242392-2
Reference: [4] Çıbık, A., Kaya, S.: A projection-based stabilized finite element method for steady-state natural convection problem.J. Math. Anal. Appl. 381 (2011), 469-484. Zbl 1331.76066, MR 2802085, 10.1016/j.jmaa.2011.02.020
Reference: [5] Du, B., Su, H., Feng, X.: Two-level variational multiscale method based on the decoupling approach for the natural convection problem.Int. Commun. Heat. Mass. 61 (2015), 128-139. 10.1016/j.icheatmasstransfer.2014.12.004
Reference: [6] He, Y.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations.SIAM J. Numer. Anal. 41 (2003), 1263-1285. Zbl 1130.76365, MR 2034880, 10.1137/S0036142901385659
Reference: [7] He, Y.: Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with {$H^2$} or {$H^1$} initial data.Numer. Methods Partial Differ. Equations 21 (2005), 875-904. Zbl 1076.76059, MR 2154224, 10.1002/num.20065
Reference: [8] Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization.SIAM J. Numer. Anal. 19 (1982), 275-311. Zbl 0487.76035, MR 0650052, 10.1137/0719018
Reference: [9] Manzari, M. T.: An explicit finite element algorithm for convection heat transfer problems.Int. J. Numer. Methods Heat Fluid Flow 9 (1999), 860-877. Zbl 0955.76050, 10.1108/09615539910297932
Reference: [10] Pyo, J. H.: A classification of the second order projection methods to solve the Navier-Stokes equations.Korean J. Math. 22 (2014), 645-658. 10.11568/kjm.2014.22.4.645
Reference: [11] Qian, Y. X., Zhang, T.: On error estimates of the projection method for the time-dependent natural convection problem: first order scheme.Submitted to Comput. Math. Appl.
Reference: [12] Qian, Y. X., Zhang, T.: On error estimates of a higher projection method for the time-dependent natural convection problem.Submitted to Front. Math. China.
Reference: [13] Shen, J.: On error estimates of projection methods for Navier-Stokes equations: First-order schemes.SIAM J. Numer. Anal. 29 (1992), 57-77. Zbl 0741.76051, MR 1149084, 10.1137/0729004
Reference: [14] Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations.Numer. Math. 62 (1992), 49-73. MR 1159045, 10.1007/BF01396220
Reference: [15] Shen, S.: The finite element analysis for the conduction-convection problems.Math. Numer. Sin. 16 (1994), 170-182 Chinese. Zbl 0922.76105, MR 1392611
Reference: [16] Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes.Math. Comput. 65 (1996), 1039-1065. Zbl 0855.76049, MR 1348047, 10.1090/S0025-5718-96-00750-8
Reference: [17] Tabata, M., Tagami, D.: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients.Numer. Math. 100 (2005), 351-372. Zbl 1082.65090, MR 2135787, 10.1007/s00211-005-0589-2
Reference: [18] Témam, R.: Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II.Arch. Ration. Mech. Anal. French 33 (1969), 377-385. Zbl 0207.16904, MR 0244654, 10.1007/BF00247696
Reference: [19] Témam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.Studies in Mathematics and Its Applications, Vol. 2 North-Holland, Amsterdam (1984). Zbl 0568.35002, MR 0609732
Reference: [20] Vreman, A. W.: The projection method for the incompressible Navier-Stokes equations: the pressure near a no-slip wall.J. Comput. Phys. 263 (2014), 353-374. Zbl 1349.76547, MR 3165701, 10.1016/j.jcp.2014.01.035
Reference: [21] Zhang, Y., Hou, Y., Zhao, J.: Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem.Comput. Math. Appl. 68 (2014), 543-567. Zbl 1362.76056, MR 3237861, 10.1016/j.camwa.2014.06.008
Reference: [22] Zhang, T., Tao, Z.: Decoupled scheme for time-dependent natural convection problem II: time semidiscreteness.Math. Probl. Eng. 2014 (2014), Article ID 726249, 23 pages. MR 3294924
Reference: [23] Zhang, T., Yuan, J., Si, Z.: Decoupled two-grid finite element method for the time-dependent natural convection problem I: Spatial discretization.Numer. Methods Partial Differ. Equations 31 (2015), 2135-2168. Zbl 1336.65172, MR 3403723, 10.1002/num.21987
Reference: [24] Zhang, X., Zhang, P.: Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method.Eng. Anal. Bound. Elem. 61 (2015), 287-300. MR 3400016, 10.1016/j.enganabound.2015.08.005
Reference: [25] Zhang, T., Zhao, X., Huang, P.: Decoupled two level finite element methods for the steady natural convection problem.Numer. Algorithms 68 (2015), 837-866. Zbl 1311.76074, MR 3325828, 10.1007/s11075-014-9874-4
.

Files

Files Size Format View
AplMat_61-2016-3_4.pdf 283.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo