Previous |  Up |  Next

Article

Title: The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory (English)
Author: Derbazi, Ammar
Author: Dalah, Mohamed
Author: Megrous, Amar
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 3
Year: 2016
Pages: 339-358
Summary lang: English
.
Category: math
.
Summary: We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent variational equation for the potential field. Then we prove the existence of a unique weak solution to the model. Moreover, the proof is based on arguments of evolution equations and on the Banach fixed-point theorem. (English)
Keyword: weak solution
Keyword: variational formulation
Keyword: antiplane shear deformation
Keyword: electro-viscoelastic material
Keyword: Tresca's friction
Keyword: fixed point
Keyword: variational inequality
MSC: 49J40
MSC: 74F15
MSC: 74G25
MSC: 74M10
idZBL: Zbl 06587856
idMR: MR3502115
DOI: 10.1007/s10492-016-0135-9
.
Date available: 2016-05-19T08:59:47Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145705
.
Reference: [1] Andreu, F., Mazón, J. M., Sofonea, M.: Entropy solutions in the study of antiplane shear deformations for elastic solids.Math. Models Methods Appl. Sci. 10 (2000), 99-126. Zbl 1077.74583, MR 1750246, 10.1142/S0218202500000082
Reference: [2] Batra, R. C., Yang, J. S.: Saint-Venant's principle in linear piezoelectricity.J. Elasticity 38 (1995), 209-218. Zbl 0828.73061, MR 1336038, 10.1007/BF00042498
Reference: [3] Bisegna, P., Lebon, F., Maceri, F.: The unilateral frictional contact of a piezoelectric body with a rigid support.Contact Mechanics J. A. C. Martins et al. Proc. of the 3rd Contact Mechanics International Symposium, Praia da Consolação, 2001 Solic. Mech. Appl. 103, Kluwer Academic Publishers, Dordrecht (2002), 347-354. Zbl 1053.74583, MR 1968676
Reference: [4] Borrelli, A., Horgan, C. O., Patria, M. C.: Saint-Venant's principle for antiplane shear deformations of linear piezoelectric materials.SIAM J. Appl. Math. 62 (2002), 2027-2044. Zbl 1047.74019, MR 1918305, 10.1137/S0036139901392506
Reference: [5] Campillo, M., Dascalu, C., Ionescu, I. R.: Instability of a periodic system of faults.Geophys. J. Int. 159 (2004), 212-222. 10.1111/j.1365-246X.2004.02365.x
Reference: [6] Campillo, M., Ionescu, I. R.: Initiation of antiplane shear instability under slip dependent friction.J. Geophys. Res. 102 (1997), 363-371. 10.1029/97JB01508
Reference: [7] Denkowski, Z., Migórski, S., Ochal, A.: A class of optimal control problems for piezoelectric frictional contact models.Nonlinear Anal., Real World Appl. 12 (2011), 1883-1895. Zbl 1217.49008, MR 2781904
Reference: [8] Hoarau-Mantel, T.-V., Matei, A.: Analysis of a viscoelastic antiplane contact problem with slip-dependent friction.Int. J. Appl. Math. Comput. Sci. 12 (2002), 51-58. Zbl 1038.74032, MR 1905993
Reference: [9] Horgan, C. O.: Anti-plane shear deformations in linear and nonlinear solid mechanics.SIAM Rev. 37 (1995), 53-81. Zbl 0824.73018, MR 1327716, 10.1137/1037003
Reference: [10] Horgan, C. O.: Recent developments concerning Saint-Venant's principle: a second update.Appl. Mech. Rev. 49 (1996), 101-111. 10.1115/1.3101961
Reference: [11] Horgan, C. O., Miller, K. L.: Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linearly elastic solids.J. Appl. Mech. 61 (1994), 23-29. Zbl 0809.73016, MR 1266833, 10.1115/1.2901416
Reference: [12] Ikeda, T.: Fundamentals of Piezoelectricity.Oxford University Press, Oxford (1990).
Reference: [13] Ionescu, I. R., Dascalu, Ch., Campillo, M.: Slip-weakening friction on a periodic system of faults: Spectral analysis.Z. Angew. Math. Phys. 53 (2002), 980-995. Zbl 1014.35068, MR 1963548, 10.1007/PL00012624
Reference: [14] Ionescu, I. R., Wolf, S.: Interaction of faults under slip-dependent friction. Nonlinear eigenvalue analysis.Math. Methods Appl. Sci. 28 (2005), 77-100. Zbl 1062.86006, MR 2105794, 10.1002/mma.550
Reference: [15] Lerguet, Z., Shillor, M., Sofonea, M.: A frictional contact problem for an electro-viscoelastic body.Electron. J. Differ. Equ. (electronic only) 2007 (2007), 16 pages. Zbl 1139.74041, MR 2366063
Reference: [16] Maceri, F., Bisegna, P.: The unilateral frictionless contact of a piezoelectric body with a rigid support.Math. Comput. Modelling 28 (1998), 19-28. Zbl 1126.74392, MR 1616376, 10.1016/S0895-7177(98)00105-8
Reference: [17] Matei, A., Motreanu, V. V., Sofonea, M.: A quasistatic antiplane contact problem with slip dependent friction.Adv. Nonlinear Var. Inequal. 4 (2001), 1-21. Zbl 1205.74132, MR 1830622
Reference: [18] Migórski, S.: Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity.Discrete Contin. Dyn. Syst., Ser. B 6 (2006), 1339-1356. Zbl 1109.74039, MR 2240746, 10.3934/dcdsb.2006.6.1339
Reference: [19] Migórski, S., Ochal, A., Sofonea, M.: Modeling and analysis of an antiplane piezoelectric contact problem.Math. Models Methods Appl. Sci. 19 (2009), 1295-1324. MR 2555472, 10.1142/S0218202509003796
Reference: [20] Migórski, S., Ochal, A., Sofonea, M.: Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3738-3748. Zbl 1159.74026, MR 2504461, 10.1016/j.na.2008.07.029
Reference: [21] Migórski, S., Ochal, A., Sofonea, M.: Weak solvability of antiplane frictional contact problems for elastic cylinders.Nonlinear Anal., Real World Appl. 11 (2010), 172-183. Zbl 1241.74029, MR 2570537
Reference: [22] Migórski, S., Ochal, A., Sofonea, M.: Analysis of a piezoelectric contact problem with subdifferential boundary condition.Proc. R. Soc. Edinb., Sect. A, Math. 144 (2014), 1007-1025. Zbl 1306.49014, MR 3265542, 10.1017/S0308210513000607
Reference: [23] Patron, V. Z., Kudryavtsev, B. A.: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids.Gordon & Breach, London (1988).
Reference: [24] Sofonea, M., Dalah, M., Ayadi, A.: Analysis of an antiplane electro-elastic contact problem.Adv. Math. Sci. Appl. 17 (2007), 385-400. Zbl 1131.74036, MR 2374134
Reference: [25] Sofonea, M., Essoufi, El H.: Quasistatic frictional contact of a viscoelastic piezoelectric body.Adv. Math. Sci. Appl. 14 (2004), 613-631. Zbl 1078.74036, MR 2111832
Reference: [26] Sofonea, M., Niculescu, C. P., Matei, A.: An antiplane contact problem for viscoelastic materials with long-term memory.Math. Model. Anal. 11 (2006), 213-228. Zbl 1104.74049, MR 2231211, 10.3846/13926292.2006.9637314
Reference: [27] Zhou, Z.-G., Wang, B., Du, S.-Y.: Investigation of antiplane shear behavior of two collinear permeable cracks in a piezoelectric material by using the nonlocal theory.J. Appl. Mech. 69 (2002), 388-390. Zbl 1110.74805, 10.1115/1.1445144
.

Files

Files Size Format View
AplMat_61-2016-3_6.pdf 306.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo