Previous |  Up |  Next

Article

Title: Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in $\mathbb {R}^N$ (English)
Author: Chen, Caisheng
Author: Song, Hongxue
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 3
Year: 2016
Pages: 317-337
Summary lang: English
.
Category: math
.
Summary: In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation $$ -\Delta _Nu+b|u|^{N-2}u-\Delta _N(u^2)u=h(u), \quad x\in \mathbb {R}^N, $$ where $\Delta _N$ is the $N$-Laplacian operator, $h(u)$ is continuous and behaves as $\exp (\alpha |u|^{{N}/{(N-1)}})$ when $|u|\to \infty $. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution $u(x)\in W^{1,N}(\mathbb {R}^N)$ with $u(x)\to 0$ as $|x|\to \infty $ is established. (English)
Keyword: $N$-Laplacian equation
Keyword: critical exponential growth
Keyword: Schwarz symmetrization
Keyword: Nehari manifold
MSC: 35D30
MSC: 35J20
MSC: 35J92
idZBL: Zbl 06587855
idMR: MR3502114
DOI: 10.1007/s10492-016-0134-x
.
Date available: 2016-05-19T08:57:51Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145704
.
Reference: [1] Adachi, S., Tanaka, K.: Trudinger type inequalities in $\mathbb R^N$ and their best exponents.Proc. Am. Math. Soc. 128 (2000), 2051-2057. MR 1646323, 10.1090/S0002-9939-99-05180-1
Reference: [2] Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach.Universitext Springer, London (2011). Zbl 1214.35025, MR 2722059
Reference: [3] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state.Arch. Ration. Mech. Anal. 82 (1983), 313-345. Zbl 0533.35029, MR 0695535, 10.1007/BF00250555
Reference: [4] Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals.Proc. Am. Math. Soc. 88 (1983), 486-490. Zbl 0526.46037, MR 0699419, 10.2307/2044999
Reference: [5] Cazenave, T.: Semilinear Schrödinger Equations.Courant Lecture Notes in Mathematics 10 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003). Zbl 1055.35003, MR 2002047
Reference: [6] Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56 (2004), 213-226. Zbl 1035.35038, MR 2029068, 10.1016/j.na.2003.09.008
Reference: [7] Bouard, A. de, Hayashi, N., Saut, J.-C.: Global existence of small solutions to a relativistic nonlinear Schrödinger equation.Commun. Math. Phys. 189 (1997), 73-105. Zbl 0948.81025, MR 1478531, 10.1007/s002200050191
Reference: [8] Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B.: Elliptic equations in {$R^2$} with nonlinearities in the critical growth range.Calc. Var. Partial Differ. Equ. 3 (1995), 139-153. MR 1386960, 10.1007/BF01205003
Reference: [9] 'O, J. M. B. do: Semilinear Dirichlet problems for the {$N$}-Laplacian in {$\mathbb R^N$} with nonlinearities in the critical growth range.Differ. Integral Equ. 9 (1996), 967-979. MR 1392090
Reference: [10] 'O, J. M. B. do: $N$-Laplacian equations in $\mathbb R^N$ with critical growth.Abstr. Appl. Anal. 2 (1997), 301-315. MR 1704875, 10.1155/S1085337597000419
Reference: [11] Ó, J. M. B. do, Medeiros, E., Severo, U.: On a quasilinear nonhomogeneous elliptic equation with critical growth in $\Bbb R^N$.J. Differ. Equations 246 (2009), 1363-1386. MR 2488689, 10.1016/j.jde.2008.11.020
Reference: [12] Ó, J. M. B. do, Miyagaki, O. H., Soares, S. H. M.: Soliton solutions for quasilinear Schrödinger equations: the critical exponential case.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67 (2007), 3357-3372. MR 2350892, 10.1016/j.na.2006.10.018
Reference: [13] Ó, J. M. B. do, Severo, U.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two.Calc. Var. Partial Differ. Equ. 38 (2010), 275-315. MR 2647122, 10.1007/s00526-009-0286-6
Reference: [14] Edmunds, D. E., Ilyin, A. A.: Asymptotically sharp multiplicative inequalities.Bull. London Math. Soc. 27 (1995), 71-74. Zbl 0840.46018, MR 1331684, 10.1112/blms/27.1.71
Reference: [15] Fang, X.-D., Szulkin, A.: Multiple solutions for a quasilinear Schrödinger equation.J. Differ. Equations 254 (2013), 2015-2032. Zbl 1263.35113, MR 3003301, 10.1016/j.jde.2012.11.017
Reference: [16] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition.Classics in Mathematics Springer, Berlin (2001). MR 1814364
Reference: [17] Hasse, R. W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations.Z. Phys., B 37 (1980), 83-87. MR 0563644, 10.1007/BF01325508
Reference: [18] Kurihara, S.: Exact soliton solution for superfluid film dynamics.J. Phys. Soc. Japan 50 (1981), 3801-3805. MR 0638806, 10.1143/JPSJ.50.3801
Reference: [19] Laedke, E. W., Spatschek, K. H., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions.J. Math. Phys. 24 (1983), 2764-2769. Zbl 0548.35101, MR 0727767, 10.1063/1.525675
Reference: [20] Lieb, E. H., Loss, M.: Analysis.Graduate Studies in Mathematics 14 American Mathematical Society, Providence (2001). Zbl 0966.26002, MR 1817225
Reference: [21] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 223-283. Zbl 0704.49004, MR 0778974, 10.1016/S0294-1449(16)30422-X
Reference: [22] Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. II.J. Differ. Equations 187 (2003), 473-493. Zbl 1229.35268, MR 1949452, 10.1016/S0022-0396(02)00064-5
Reference: [23] Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Solutions for quasilinear Schrödinger equations via the Nehari method.Commun. Partial Differ. Equations 29 879-901 (2004). Zbl 1140.35399, MR 2059151, 10.1081/PDE-120037335
Reference: [24] Makhankov, V. G., Fedyanin, V. K.: Nonlinear effects in quasi-one-dimensional models and condensed matter theory.Phys. Rep. 104 1-86 (1984). MR 0740342, 10.1016/0370-1573(84)90106-6
Reference: [25] Quispel, G. R. W., Capel, H. W.: Equation of motion for the Heisenberg spin chain.Physica A 110 (1982), 41-80. MR 0647411, 10.1016/0378-4371(82)90104-2
Reference: [26] Ruiz, D., Siciliano, G.: Existence of ground states for a modified nonlinear Schrödinger equation.Nonlinearity 23 (2010), 1221-1233. Zbl 1189.35316, MR 2630099, 10.1088/0951-7715/23/5/011
Reference: [27] Serrin, J.: Local behavior of solutions of quasi-linear equations.Acta Math. 111 (1964), 247-302. Zbl 0128.09101, MR 0170096, 10.1007/BF02391014
Reference: [28] Severo, U.: Existence of weak solutions for quasilinear elliptic equations involving the {$p$}-Laplacian.Electron. J. Differ. Equ. (electronic only) 2008 (2008), 16 pages. Zbl 1173.35483, MR 2392960
Reference: [29] Wang, Y., Yang, J., Zhang, Y.: Quasilinear elliptic equations involving the {$N$}-Laplacian with critical exponential growth in {$\Bbb R^N$}.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 6157-6169. Zbl 1180.35262, MR 2566522, 10.1016/j.na.2009.06.006
.

Files

Files Size Format View
AplMat_61-2016-3_5.pdf 321.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo