Previous |  Up |  Next

Article

Title: Quadratic differentials $(A(z-a)(z-b)/(z-c)^{2}) {\rm d} z^{2}$ and algebraic Cauchy transform (English)
Author: Atia, Mohamed Jalel
Author: Thabet, Faouzi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 351-363
Summary lang: English
.
Category: math
.
Summary: We discuss the representability almost everywhere (a.e.) in $\mathbb {C}$ of an irreducible algebraic function as the Cauchy transform of a signed measure supported on a finite number of compact semi-analytic curves and a finite number of isolated points. This brings us to the study of trajectories of the particular family of quadratic differentials $A(z-a)(z-b)\*(z-c)^{-2} {\rm d} z^{2}$. More precisely, we give a necessary and sufficient condition on the complex numbers $a$ and $b$ for these quadratic differentials to have finite critical trajectories. We also discuss all possible configurations of critical graphs. (English)
Keyword: algebraic equation
Keyword: Cauchy transform
Keyword: quadratic differential
MSC: 28A99
MSC: 30L05
idZBL: Zbl 06604471
idMR: MR3519606
DOI: 10.1007/s10587-016-0260-3
.
Date available: 2016-06-16T12:43:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145728
.
Reference: [1] Atia, M. J., Martínez-Finkelshtein, A., Martínez-González, P., Thabet, F.: Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters.J. Math. Anal. Appl. 416 (2014), 52-80. Zbl 1295.30015, MR 3182748, 10.1016/j.jmaa.2014.02.040
Reference: [2] Jenkins, J. A.: Univalent Functions and Conformal Mapping.Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie Springer, Berlin (1958). Zbl 0083.29606, MR 0096806
Reference: [3] Kuijlaars, A. B. J., McLaughlin, K. T.-R.: Asymptotic zero behavior of Laguerre polynomials with negative parameter.Constructive Approximation 20 (2004), 497-523. Zbl 1069.33008, MR 2078083, 10.1007/s00365-003-0536-3
Reference: [4] Martínez-Finkelshtein, A., Martínez-González, P., Orive, R.: On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters.J. Comput. Appl. Math. 133 (2001), 477-487 Conf. Proc. (Patras, 1999), Elsevier (North-Holland), Amsterdam. Zbl 0990.33009, MR 1858305, 10.1016/S0377-0427(00)00654-3
Reference: [5] Pommerenke, C.: Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen.Studia Mathematica/Mathematische Lehrbücher. Band 25. Vandenhoeck & Ruprecht, Göttingen (1975). Zbl 0298.30014, MR 0507768
Reference: [6] Pritsker, I. E.: How to find a measure from its potential.Comput. Methods Funct. Theory 8 597-614 (2008). Zbl 1160.31004, MR 2419497, 10.1007/BF03321707
Reference: [7] Strebel, K.: Quadratic Differentials.Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Vol. 5 Springer, Berlin (1984). Zbl 0547.30038, MR 0743423
Reference: [8] Vasil'ev, A.: Moduli of Families of Curves for Conformal and Quasiconformal Mappings.Lecture Notes in Mathematics 1788 Springer, Berlin (2002). Zbl 0999.30001, MR 1929066, 10.1007/b83857
.

Files

Files Size Format View
CzechMathJ_66-2016-2_5.pdf 309.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo