Title:
|
On the diameter of the intersection graph of a finite simple group (English) |
Author:
|
Ma, Xuanlong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
365-370 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group. The intersection graph $\Delta _G$ of $G$ is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper nontrivial subgroups of $G$, and two distinct vertices $X$ and $Y$ are adjacent if $X\cap Y\ne 1$, where $1$ denotes the trivial subgroup of order $1$. A question was posed by Shen (2010) whether the diameters of intersection graphs of finite non-abelian simple groups have an upper bound. We answer the question and show that the diameters of intersection graphs of finite non-abelian simple groups have an upper bound $28$. In particular, the intersection graph of a finite non-abelian simple group is connected. (English) |
Keyword:
|
intersection graph |
Keyword:
|
finite simple group |
Keyword:
|
diameter |
MSC:
|
05C25 |
MSC:
|
20E32 |
idZBL:
|
Zbl 06604472 |
idMR:
|
MR3519607 |
DOI:
|
10.1007/s10587-016-0261-2 |
. |
Date available:
|
2016-06-16T12:44:02Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145729 |
. |
Reference:
|
[1] Bosák, J.: The graphs of semigroups.Theory of Graphs and Its Applications Proc. Sympos., Smolenice 1963 Publ. House Czechoslovak Acad. Sci., Praha (1964), 119-125. MR 0173718 |
Reference:
|
[2] Chigira, N., Iiyori, N., Yamaki, H.: Non-abelian Sylow subgroups of finite groups of even order.Invent. Math. 139 (2000), 525-539. Zbl 0961.20017, MR 1738059, 10.1007/s002229900040 |
Reference:
|
[3] Csákány, B., Pollák, G.: The graph of subgroups of a finite group.Czech. Math. J. 19 (1969), 241-247 Russian. MR 0249328 |
Reference:
|
[4] Herzog, M., Longobardi, P., Maj, M.: On a graph related to the maximal subgroups of a group.Bull. Aust. Math. Soc. 81 (2010), 317-328. Zbl 1196.20037, MR 2609113, 10.1017/S0004972709000951 |
Reference:
|
[5] Huppert, B.: Endliche Gruppen I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703 |
Reference:
|
[6] Kayacan, S., Yaraneri, E.: Abelian groups with isomorphic intersection graphs.Acta Math. Hungar. 146 (2015), 107-127. Zbl 1374.20047, MR 3348183, 10.1007/s10474-015-0486-9 |
Reference:
|
[7] Kleidman, P. B., Wilson, R. A.: The maximal subgroups of $J_4$.Proc. Lond. Math. Soc., III. Ser. 56 (1988), 484-510. MR 0931511, 10.1112/plms/s3-56.3.484 |
Reference:
|
[8] Kondraťev, A. S.: Prime graph components of finite simple groups.Math. USSR Sb. 67 (1990), Russian 235-247. Zbl 0698.20009, MR 1015040, 10.1070/SM1990v067n01ABEH001363 |
Reference:
|
[9] Sawabe, M.: A note on finite simple groups with abelian Sylow $p$-subgroups.Tokyo J. Math. 30 (2007), 293-304. Zbl 1151.20008, MR 2376509, 10.3836/tjm/1202136676 |
Reference:
|
[10] Shen, R.: Intersection graphs of subgroups of finite groups.Czech. Math. J. 60 (2010), 945-950. Zbl 1208.20022, MR 2738958, 10.1007/s10587-010-0085-4 |
Reference:
|
[11] Williams, J. S.: Prime graph components of finite groups.J. Algebra 69 (1981), 487-513. Zbl 0471.20013, MR 0617092, 10.1016/0021-8693(81)90218-0 |
Reference:
|
[12] Zavarnitsine, A. V.: Finite groups with a five-component prime graph.Sib. Math. J. 54 (2013), 40-46. Zbl 1275.20009, MR 3089326, 10.1134/S0037446613010060 |
Reference:
|
[13] Zelinka, B.: Intersection graphs of finite abelian groups.Czech. Math. J. 25 (1975), 171-174. Zbl 0311.05119, MR 0372075 |
. |