Previous |  Up |  Next

Article

Title: On the diameter of the intersection graph of a finite simple group (English)
Author: Ma, Xuanlong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 365-370
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group. The intersection graph $\Delta _G$ of $G$ is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper nontrivial subgroups of $G$, and two distinct vertices $X$ and $Y$ are adjacent if $X\cap Y\ne 1$, where $1$ denotes the trivial subgroup of order $1$. A question was posed by Shen (2010) whether the diameters of intersection graphs of finite non-abelian simple groups have an upper bound. We answer the question and show that the diameters of intersection graphs of finite non-abelian simple groups have an upper bound $28$. In particular, the intersection graph of a finite non-abelian simple group is connected. (English)
Keyword: intersection graph
Keyword: finite simple group
Keyword: diameter
MSC: 05C25
MSC: 20E32
idZBL: Zbl 06604472
idMR: MR3519607
DOI: 10.1007/s10587-016-0261-2
.
Date available: 2016-06-16T12:44:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145729
.
Reference: [1] Bosák, J.: The graphs of semigroups.Theory of Graphs and Its Applications Proc. Sympos., Smolenice 1963 Publ. House Czechoslovak Acad. Sci., Praha (1964), 119-125. MR 0173718
Reference: [2] Chigira, N., Iiyori, N., Yamaki, H.: Non-abelian Sylow subgroups of finite groups of even order.Invent. Math. 139 (2000), 525-539. Zbl 0961.20017, MR 1738059, 10.1007/s002229900040
Reference: [3] Csákány, B., Pollák, G.: The graph of subgroups of a finite group.Czech. Math. J. 19 (1969), 241-247 Russian. MR 0249328
Reference: [4] Herzog, M., Longobardi, P., Maj, M.: On a graph related to the maximal subgroups of a group.Bull. Aust. Math. Soc. 81 (2010), 317-328. Zbl 1196.20037, MR 2609113, 10.1017/S0004972709000951
Reference: [5] Huppert, B.: Endliche Gruppen I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703
Reference: [6] Kayacan, S., Yaraneri, E.: Abelian groups with isomorphic intersection graphs.Acta Math. Hungar. 146 (2015), 107-127. Zbl 1374.20047, MR 3348183, 10.1007/s10474-015-0486-9
Reference: [7] Kleidman, P. B., Wilson, R. A.: The maximal subgroups of $J_4$.Proc. Lond. Math. Soc., III. Ser. 56 (1988), 484-510. MR 0931511, 10.1112/plms/s3-56.3.484
Reference: [8] Kondraťev, A. S.: Prime graph components of finite simple groups.Math. USSR Sb. 67 (1990), Russian 235-247. Zbl 0698.20009, MR 1015040, 10.1070/SM1990v067n01ABEH001363
Reference: [9] Sawabe, M.: A note on finite simple groups with abelian Sylow $p$-subgroups.Tokyo J. Math. 30 (2007), 293-304. Zbl 1151.20008, MR 2376509, 10.3836/tjm/1202136676
Reference: [10] Shen, R.: Intersection graphs of subgroups of finite groups.Czech. Math. J. 60 (2010), 945-950. Zbl 1208.20022, MR 2738958, 10.1007/s10587-010-0085-4
Reference: [11] Williams, J. S.: Prime graph components of finite groups.J. Algebra 69 (1981), 487-513. Zbl 0471.20013, MR 0617092, 10.1016/0021-8693(81)90218-0
Reference: [12] Zavarnitsine, A. V.: Finite groups with a five-component prime graph.Sib. Math. J. 54 (2013), 40-46. Zbl 1275.20009, MR 3089326, 10.1134/S0037446613010060
Reference: [13] Zelinka, B.: Intersection graphs of finite abelian groups.Czech. Math. J. 25 (1975), 171-174. Zbl 0311.05119, MR 0372075
.

Files

Files Size Format View
CzechMathJ_66-2016-2_6.pdf 235.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo