Previous |  Up |  Next

Article

MSC: 11L05, 11L10
Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Dedekind sums; mean value; computational problem; $k$-polygonal number; analytic method
Summary:
For any positive integer $k\geq 3$, it is easy to prove that the \mbox {$k$-polygonal} numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet \mbox {$L$-functions} and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline {a}_m(k), p)$ for \mbox {$k$-polygonal} numbers with $1\leq m,n\leq p-1$, and give an interesting computational formula for it.
References:
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics Springer, New York (1976). MR 0434929 | Zbl 0335.10001
[2] Apostol, T. M.: Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematics 41 Springer, New York (1976). DOI 10.1007/978-1-4684-9910-0 | MR 1027834 | Zbl 0332.10017
[3] Carlitz, L.: The reciprocity theorem for Dedekind sums. Pac. J. Math. 3 (1953), 523-527. DOI 10.2140/pjm.1953.3.523 | MR 0056020 | Zbl 0057.03703
[4] Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums. J. Number Theory 56 (1996), Article No. 0014, 214-226. DOI 10.1006/jnth.1996.0014 | MR 1373548 | Zbl 0851.11028
[5] Jia, C.: On the mean value of Dedekind sums. J. Number Theory 87 (2001), 173-188. DOI 10.1006/jnth.2000.2580 | MR 1824141 | Zbl 0976.11044
[6] Mordell, L. J.: The reciprocity formula for Dedekind sums. Am. J. Math. 73 (1951), 593-598. DOI 10.2307/2372310 | MR 0042449 | Zbl 0042.27401
[7] Rademacher, H.: On the transformation of {$\log \eta(\tau)$}. J. Indian Math. Soc., New Ser. 19 (1955), 25-30. MR 0070660 | Zbl 0064.32703
[8] Rademacher, H., Grosswald, E.: Dedekind Sums. The Carus Mathematical Monographs 16 The Mathematical Association of America, Washington (1972). MR 0357299 | Zbl 0251.10020
[9] Zhang, W.: A note on the mean square value of the Dedekind sums. Acta Math. Hung. 86 (2000), 275-289. DOI 10.1023/A:1006724724840 | MR 1756252 | Zbl 0963.11049
[10] Zhang, W.: On the mean values of Dedekind sums. J. Théor. Nombres Bordx. 8 (1996), 429-442. DOI 10.5802/jtnb.179 | MR 1438480 | Zbl 0871.11033
[11] Zhang, W., Liu, Y.: A hybrid mean value related to the Dedekind sums and Kloosterman sums. Sci. China, Math. 53 (2010), 2543-2550. DOI 10.1007/s11425-010-3153-1 | MR 2718846 | Zbl 1221.11171
Partner of
EuDML logo