Previous |  Up |  Next

Article

Title: On the $k$-polygonal numbers and the mean value of Dedekind sums (English)
Author: Guo, Jing
Author: Li, Xiaoxue
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 409-415
Summary lang: English
.
Category: math
.
Summary: For any positive integer $k\geq 3$, it is easy to prove that the \mbox {$k$-polygonal} numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet \mbox {$L$-functions} and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline {a}_m(k), p)$ for \mbox {$k$-polygonal} numbers with $1\leq m,n\leq p-1$, and give an interesting computational formula for it. (English)
Keyword: Dedekind sums
Keyword: mean value
Keyword: computational problem
Keyword: $k$-polygonal number
Keyword: analytic method
MSC: 11L05
MSC: 11L10
idZBL: Zbl 06604475
idMR: MR3519610
DOI: 10.1007/s10587-016-0264-z
.
Date available: 2016-06-16T12:49:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145732
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics Springer, New York (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Apostol, T. M.: Modular Functions and Dirichlet Series in Number Theory.Graduate Texts in Mathematics 41 Springer, New York (1976). Zbl 0332.10017, MR 1027834, 10.1007/978-1-4684-9910-0
Reference: [3] Carlitz, L.: The reciprocity theorem for Dedekind sums.Pac. J. Math. 3 (1953), 523-527. Zbl 0057.03703, MR 0056020, 10.2140/pjm.1953.3.523
Reference: [4] Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums.J. Number Theory 56 (1996), Article No. 0014, 214-226. Zbl 0851.11028, MR 1373548, 10.1006/jnth.1996.0014
Reference: [5] Jia, C.: On the mean value of Dedekind sums.J. Number Theory 87 (2001), 173-188. Zbl 0976.11044, MR 1824141, 10.1006/jnth.2000.2580
Reference: [6] Mordell, L. J.: The reciprocity formula for Dedekind sums.Am. J. Math. 73 (1951), 593-598. Zbl 0042.27401, MR 0042449, 10.2307/2372310
Reference: [7] Rademacher, H.: On the transformation of {$\log \eta(\tau)$}.J. Indian Math. Soc., New Ser. 19 (1955), 25-30. Zbl 0064.32703, MR 0070660
Reference: [8] Rademacher, H., Grosswald, E.: Dedekind Sums.The Carus Mathematical Monographs 16 The Mathematical Association of America, Washington (1972). Zbl 0251.10020, MR 0357299
Reference: [9] Zhang, W.: A note on the mean square value of the Dedekind sums.Acta Math. Hung. 86 (2000), 275-289. Zbl 0963.11049, MR 1756252, 10.1023/A:1006724724840
Reference: [10] Zhang, W.: On the mean values of Dedekind sums.J. Théor. Nombres Bordx. 8 (1996), 429-442. Zbl 0871.11033, MR 1438480, 10.5802/jtnb.179
Reference: [11] Zhang, W., Liu, Y.: A hybrid mean value related to the Dedekind sums and Kloosterman sums.Sci. China, Math. 53 (2010), 2543-2550. Zbl 1221.11171, MR 2718846, 10.1007/s11425-010-3153-1
.

Files

Files Size Format View
CzechMathJ_66-2016-2_9.pdf 277.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo