Title:
|
On the $k$-polygonal numbers and the mean value of Dedekind sums (English) |
Author:
|
Guo, Jing |
Author:
|
Li, Xiaoxue |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
409-415 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For any positive integer $k\geq 3$, it is easy to prove that the \mbox {$k$-polygonal} numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet \mbox {$L$-functions} and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline {a}_m(k), p)$ for \mbox {$k$-polygonal} numbers with $1\leq m,n\leq p-1$, and give an interesting computational formula for it. (English) |
Keyword:
|
Dedekind sums |
Keyword:
|
mean value |
Keyword:
|
computational problem |
Keyword:
|
$k$-polygonal number |
Keyword:
|
analytic method |
MSC:
|
11L05 |
MSC:
|
11L10 |
idZBL:
|
Zbl 06604475 |
idMR:
|
MR3519610 |
DOI:
|
10.1007/s10587-016-0264-z |
. |
Date available:
|
2016-06-16T12:49:11Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145732 |
. |
Reference:
|
[1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics Springer, New York (1976). Zbl 0335.10001, MR 0434929 |
Reference:
|
[2] Apostol, T. M.: Modular Functions and Dirichlet Series in Number Theory.Graduate Texts in Mathematics 41 Springer, New York (1976). Zbl 0332.10017, MR 1027834, 10.1007/978-1-4684-9910-0 |
Reference:
|
[3] Carlitz, L.: The reciprocity theorem for Dedekind sums.Pac. J. Math. 3 (1953), 523-527. Zbl 0057.03703, MR 0056020, 10.2140/pjm.1953.3.523 |
Reference:
|
[4] Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums.J. Number Theory 56 (1996), Article No. 0014, 214-226. Zbl 0851.11028, MR 1373548, 10.1006/jnth.1996.0014 |
Reference:
|
[5] Jia, C.: On the mean value of Dedekind sums.J. Number Theory 87 (2001), 173-188. Zbl 0976.11044, MR 1824141, 10.1006/jnth.2000.2580 |
Reference:
|
[6] Mordell, L. J.: The reciprocity formula for Dedekind sums.Am. J. Math. 73 (1951), 593-598. Zbl 0042.27401, MR 0042449, 10.2307/2372310 |
Reference:
|
[7] Rademacher, H.: On the transformation of {$\log \eta(\tau)$}.J. Indian Math. Soc., New Ser. 19 (1955), 25-30. Zbl 0064.32703, MR 0070660 |
Reference:
|
[8] Rademacher, H., Grosswald, E.: Dedekind Sums.The Carus Mathematical Monographs 16 The Mathematical Association of America, Washington (1972). Zbl 0251.10020, MR 0357299 |
Reference:
|
[9] Zhang, W.: A note on the mean square value of the Dedekind sums.Acta Math. Hung. 86 (2000), 275-289. Zbl 0963.11049, MR 1756252, 10.1023/A:1006724724840 |
Reference:
|
[10] Zhang, W.: On the mean values of Dedekind sums.J. Théor. Nombres Bordx. 8 (1996), 429-442. Zbl 0871.11033, MR 1438480, 10.5802/jtnb.179 |
Reference:
|
[11] Zhang, W., Liu, Y.: A hybrid mean value related to the Dedekind sums and Kloosterman sums.Sci. China, Math. 53 (2010), 2543-2550. Zbl 1221.11171, MR 2718846, 10.1007/s11425-010-3153-1 |
. |