Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
linear space; automorphism; point-primitive automorphism group; extremely primitive permutation group
Summary:
A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let $\mathcal S$ be a nontrivial finite regular linear space and $G\leq {\rm Aut}(\mathcal S).$ Suppose that $G$ is extremely primitive on points and let rank$(G)$ be the rank of $G$ on points. We prove that rank$(G)\geq 4$ with few exceptions. Moreover, we show that ${\rm Soc}(G)$ is neither a sporadic group nor an alternating group, and $G={\rm PSL}(2,q)$ with $q+1$ a Fermat prime if ${\rm Soc}(G)$ is a finite classical simple group.
References:
[1] Biliotti, M., Montinaro, A., Francot, E.: $2$-$(v,k,1)$ designs with a point-primitive rank 3 automorphism group of affine type. Des. Codes Cryptography 76 (2015), 135-171. DOI 10.1007/s10623-014-9925-9 | MR 3357239
[2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symb. Comput. 24 (1997), 235-265. DOI 10.1006/jsco.1996.0125 | MR 1484478 | Zbl 0898.68039
[3] Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P. B., Liebeck, M. W., Saxl, J.: Linear spaces with flag-transitive automorphism groups. Geom. Dedicata 36 (1990), 89-94. MR 1065214 | Zbl 0707.51017
[4] Burness, T. C., Praeger, C. E., Seress, Á.: Extremely primitive classical groups. J. Pure Appl. Algebra 216 (2012), 1580-1610. DOI 10.1016/j.jpaa.2011.10.028 | MR 2899823 | Zbl 1260.20003
[5] Burness, T. C., Praeger, C. E., Seress, Á.: Extremely primitive sporadic and alternating groups. Bull. Lond. Math. Soc. 44 (2012), 1147-1154. DOI 10.1112/blms/bds038 | MR 3007647 | Zbl 1264.20001
[6] Camina, A. R., Neumann, P. M., Praeger, C. E.: Alternating groups acting on finite linear spaces. Proc. Lond. Math. Soc. (3) 87 (2003), 29-53. DOI 10.1112/S0024611503014060 | MR 1978569 | Zbl 1031.05133
[7] Clapham, P. C.: Steiner triple systems with block-transitive automorphism groups. Discrete Math. 14 (1976), 121-131. DOI 10.1016/0012-365X(76)90055-8 | MR 0409210 | Zbl 0323.05012
[8] Delandtsheer, A.: 2-designs with a group transitive on the pairs of intersecting lines. Simon Stevin 66 (1992), 107-112. MR 1198869 | Zbl 0784.51006
[9] Devillers, A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of grid type. Eur. J. Comb. 29 (2008), 268-272. DOI 10.1016/j.ejc.2006.09.003 | MR 2368634 | Zbl 1128.51004
[10] Devillers, A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of almost simple type. Innov. Incidence Geom. 2 (2005), 129-175. MR 2214719 | Zbl 1095.51002
[11] Higman, D. G., McLaughlin, J. E.: Geometric $ABA$-groups. Ill. J. Math. 5 (1961), 382-- 397. MR 0131216 | Zbl 0104.14702
[12] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). MR 0224703 | Zbl 0217.07201
[13] Kantor, W. M.: Homogeneous designs and geometric lattices. J. Comb. Theory, Ser. A 38 (1985), 66-74. DOI 10.1016/0097-3165(85)90022-6 | MR 0773556 | Zbl 0559.05015
[14] Liebeck, M. W.: The classification of finite linear spaces with flag-transitive automorphism groups of affine type. J. Comb. Theory, Ser. A 84 (1998), 196-235. DOI 10.1006/jcta.1998.2897 | MR 1652833 | Zbl 0918.51009
[15] Mann, A., Praeger, C. E., Seress, Á.: Extremely primitive groups. Groups Geom. Dyn. 1 (2007), 623-660. DOI 10.4171/GGD/27 | MR 2357486 | Zbl 1141.20003
[16] Montinaro, A.: $2$-$(v,k,1)$ designs admitting a primitive rank $3$ automorphism group of affine type: the extraspecial and the exceptional classes. J. Comb. Des. 23 481-498 (2015). DOI 10.1002/jcd.21402 | MR 3403763 | Zbl 1331.05050
[17] Praeger, C. E., Xu, M. Y.: Vertex-primitive graphs of order a product of two distinct primes. J. Comb. Theory, Ser. B 59 (1993), 245-266. DOI 10.1006/jctb.1993.1068 | MR 1244933 | Zbl 0793.05072
[18] al., R. Wilson et: Atlas of Finite Group Representations. Version 3. Available at http://brauer.maths.qmul.ac.uk/Atlas/v3/
Partner of
EuDML logo