Previous |  Up |  Next

Article

Title: Extremely primitive groups and linear spaces (English)
Author: Guan, Haiyan
Author: Zhou, Shenglin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 445-455
Summary lang: English
.
Category: math
.
Summary: A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let $\mathcal S$ be a nontrivial finite regular linear space and $G\leq {\rm Aut}(\mathcal S).$ Suppose that $G$ is extremely primitive on points and let rank$(G)$ be the rank of $G$ on points. We prove that rank$(G)\geq 4$ with few exceptions. Moreover, we show that ${\rm Soc}(G)$ is neither a sporadic group nor an alternating group, and $G={\rm PSL}(2,q)$ with $q+1$ a Fermat prime if ${\rm Soc}(G)$ is a finite classical simple group. (English)
Keyword: linear space
Keyword: automorphism
Keyword: point-primitive automorphism group
Keyword: extremely primitive permutation group
MSC: 05B05
MSC: 05B25
MSC: 20B15
MSC: 20B25
idZBL: Zbl 06604478
idMR: MR3519613
DOI: 10.1007/s10587-016-0267-9
.
Date available: 2016-06-16T12:53:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145735
.
Reference: [1] Biliotti, M., Montinaro, A., Francot, E.: $2$-$(v,k,1)$ designs with a point-primitive rank 3 automorphism group of affine type.Des. Codes Cryptography 76 (2015), 135-171. MR 3357239, 10.1007/s10623-014-9925-9
Reference: [2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language.J. Symb. Comput. 24 (1997), 235-265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125
Reference: [3] Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P. B., Liebeck, M. W., Saxl, J.: Linear spaces with flag-transitive automorphism groups.Geom. Dedicata 36 (1990), 89-94. Zbl 0707.51017, MR 1065214
Reference: [4] Burness, T. C., Praeger, C. E., Seress, Á.: Extremely primitive classical groups.J. Pure Appl. Algebra 216 (2012), 1580-1610. Zbl 1260.20003, MR 2899823, 10.1016/j.jpaa.2011.10.028
Reference: [5] Burness, T. C., Praeger, C. E., Seress, Á.: Extremely primitive sporadic and alternating groups.Bull. Lond. Math. Soc. 44 (2012), 1147-1154. Zbl 1264.20001, MR 3007647, 10.1112/blms/bds038
Reference: [6] Camina, A. R., Neumann, P. M., Praeger, C. E.: Alternating groups acting on finite linear spaces.Proc. Lond. Math. Soc. (3) 87 (2003), 29-53. Zbl 1031.05133, MR 1978569, 10.1112/S0024611503014060
Reference: [7] Clapham, P. C.: Steiner triple systems with block-transitive automorphism groups.Discrete Math. 14 (1976), 121-131. Zbl 0323.05012, MR 0409210, 10.1016/0012-365X(76)90055-8
Reference: [8] Delandtsheer, A.: 2-designs with a group transitive on the pairs of intersecting lines.Simon Stevin 66 (1992), 107-112. Zbl 0784.51006, MR 1198869
Reference: [9] Devillers, A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of grid type.Eur. J. Comb. 29 (2008), 268-272. Zbl 1128.51004, MR 2368634, 10.1016/j.ejc.2006.09.003
Reference: [10] Devillers, A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of almost simple type.Innov. Incidence Geom. 2 (2005), 129-175. Zbl 1095.51002, MR 2214719, 10.2140/iig.2005.2.129
Reference: [11] Higman, D. G., McLaughlin, J. E.: Geometric $ABA$-groups.Ill. J. Math. 5 (1961), 382-- 397. Zbl 0104.14702, MR 0131216, 10.1215/ijm/1255630883
Reference: [12] Huppert, B.: Endliche Gruppen. I.Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703
Reference: [13] Kantor, W. M.: Homogeneous designs and geometric lattices.J. Comb. Theory, Ser. A 38 (1985), 66-74. Zbl 0559.05015, MR 0773556, 10.1016/0097-3165(85)90022-6
Reference: [14] Liebeck, M. W.: The classification of finite linear spaces with flag-transitive automorphism groups of affine type.J. Comb. Theory, Ser. A 84 (1998), 196-235. Zbl 0918.51009, MR 1652833, 10.1006/jcta.1998.2897
Reference: [15] Mann, A., Praeger, C. E., Seress, Á.: Extremely primitive groups.Groups Geom. Dyn. 1 (2007), 623-660. Zbl 1141.20003, MR 2357486, 10.4171/GGD/27
Reference: [16] Montinaro, A.: $2$-$(v,k,1)$ designs admitting a primitive rank $3$ automorphism group of affine type: the extraspecial and the exceptional classes.J. Comb. Des. 23 481-498 (2015). Zbl 1331.05050, MR 3403763, 10.1002/jcd.21402
Reference: [17] Praeger, C. E., Xu, M. Y.: Vertex-primitive graphs of order a product of two distinct primes.J. Comb. Theory, Ser. B 59 (1993), 245-266. Zbl 0793.05072, MR 1244933, 10.1006/jctb.1993.1068
Reference: [18] al., R. Wilson et: Atlas of Finite Group Representations. Version 3.Available at http://brauer.maths.qmul.ac.uk/Atlas/v3/.
.

Files

Files Size Format View
CzechMathJ_66-2016-2_12.pdf 275.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo