Previous |  Up |  Next

Article

Title: Normal number constructions for Cantor series with slowly growing bases (English)
Author: Airey, Dylan
Author: Mance, Bill
Author: Vandehey, Joseph
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 465-480
Summary lang: English
.
Category: math
.
Summary: Let $Q=(q_n)_{n=1}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties. (English)
Keyword: Cantor series
Keyword: normal number
MSC: 11A63
MSC: 11K16
idZBL: Zbl 06604480
idMR: MR3519615
DOI: 10.1007/s10587-016-0269-7
.
Date available: 2016-06-16T12:56:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145737
.
Reference: [1] Airey, D., Mance, B.: On the Hausdorff dimension of some sets of numbers defined through the digits of their $Q$-Cantor series expansions.J. Fractal Geom. 3 (2016), 163-186. MR 3501345, 10.4171/JFG/33
Reference: [2] Airey, D., Mance, B.: Normal equivalencies for eventually periodic basic sequences.Indag. Math., New Ser. 26 (2015), 476-484. Zbl 1326.11036, MR 3341809, 10.1016/j.indag.2015.02.002
Reference: [3] Airey, D., Mance, B., Vandehey, J.: Normality preserving operations for Cantor series expansions and associated fractals II.New York J. Math. (electronic only) 21 (2015), 1311-1326. MR 3441645
Reference: [4] Altomare, C., Mance, B.: Cantor series constructions contrasting two notions of normality.Monatsh. Math. 164 (2011), 1-22. Zbl 1276.11128, MR 2827169, 10.1007/s00605-010-0213-0
Reference: [5] Becher, V., Figueira, S., Picchi, R.: Turing's unpublished algorithm for normal numbers.Theor. Comput. Sci. 377 (2007), 126-138. Zbl 1117.03051, MR 2323391, 10.1016/j.tcs.2007.02.022
Reference: [6] Cantor, G.: Über die einfachen Zahlensysteme.Zeitschrift für Mathematik und Physik 14 (1869), 121-128 German.
Reference: [7] Champernowne, D. G.: The construction of decimals normal in the scale of ten.J. Lond. Math. Soc. 8 (1933), 254-260. Zbl 0007.33701, MR 1573965, 10.1112/jlms/s1-8.4.254
Reference: [8] Erdős, P., Rényi, A.: On Cantor's series with convergent $\sum 1/q_n$.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 2 (1959), 93-109. Zbl 0095.26501, MR 0126414
Reference: [9] Erdős, P., Rényi, A.: Some further statistical properties of the digits in Cantor's series.Acta Math. Acad. Sci. Hung. 10 (1959), 21-29. Zbl 0088.25804, MR 0107631, 10.1007/BF02063287
Reference: [10] Galambos, J.: Representations of Real Numbers by Infinite Series.Lecture Notes in Mathematics 502 Springer, Berlin (1976). Zbl 0322.10002, MR 0568141, 10.1007/BFb0081642
Reference: [11] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences.Pure and Applied Mathematics John Wiley & Sons, New York (1974). Zbl 0281.10001, MR 0419394
Reference: [12] Mance, B.: Number theoretic applications of a class of Cantor series fractal functions I.Acta Math. Hung. 144 (2014), 449-493. Zbl 1320.11069, MR 3274409, 10.1007/s10474-014-0456-7
Reference: [13] Mance, B.: Construction of normal numbers with respect to the $Q$-Cantor series expansion for certain $Q$.Acta Arith. 148 (2011), 135-152. Zbl 1239.11082, MR 2786161
Reference: [14] Rényi, A.: Probabilistic methods in number theory.Proc. Int. Congr. Math. (1958), 529-539. MR 0118707
Reference: [15] Rényi, A.: On the distribution of the digits in Cantor's series.7 Mat. Lapok (1956), 77-100 Hungarian. Russian, English summaries. Zbl 0075.03703, MR 0099968
Reference: [16] Rényi, A.: On a new axiomatic theory of probability.Acta Math. Acad. Sci. Hung. 6 (1955), 285-335. Zbl 0067.10401, MR 0081008, 10.1007/BF02024393
Reference: [17] Sierpiński, W.: Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d'{u}ne tel nombre.Bull. Soc. Math. Fr. 45 (1917), 125-153 French. MR 1504764, 10.24033/bsmf.977
Reference: [18] Turán, P.: On the distribution of ``digits'' in Cantor systems.Mat. Lapok 7 (1956), 71-76 Hungarian. Russian, English summaries. Zbl 0075.25202, MR 0099967
Reference: [19] Turing, A. M.: Collected Works of A. M. Turing: Pure Mathematics.North-Holland Publishing, Amsterdam J. L. Britton (1992). Zbl 0751.01017, MR 1150052
.

Files

Files Size Format View
CzechMathJ_66-2016-2_14.pdf 305.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo